Skip Navigation
Search

Marat Khairoutdinov


TITLE
Professor 
 
DEPARTMENT
Marine & Atmospheric Sciences 
 
PHONE
(631) 632-6339 
 
EMAIL
 
WEBSITE

The main goal of my research is to better understand the role of clouds in the Earth climate system through high-resolution cloud modeling. The foci of modeling activities include microphysics processes, cloud mixing and entrainment, life-cycle of boundary layer clouds, drizzle, turbulence, shallow and deep convection, interactions of clouds with radiation and with atmospheric aerosol.

I have been interested in clouds and numerical modeling of clouds ever since my undergraduate and graduate student years at Moscow Institute of Physics and Technology in late 1980s, and my subsequent employment at the Central Aerological Observatory in Moscow. There, I got my first very valuable experience in cloud modeling. I have developed a numerical model of aircraft dry-ice seeding of orographic clouds applying the explicit or bin microphysics to model processes in artificially seeded clouds. I also developed my first 3-D cloud-resolving model with bulk microphysics.

During my Ph.D. studies at the University of Oklahoma, I developed one of the first Large-Eddy Simulation (LES) models with explicit/bin microphysics and applied it to study the evolution of drizzling marine stratocumulus clouds. Using the LES results, I developed a bulk microphysics parameterization for LES models. The expression for cloud water autoconversion-to-drizzle rate has been used in several regional models and even in a couple of General Circulation Models (GCMs).

After obtaining my Ph.D. degree in 1997, I redesigned my LES model to handle deep convective clouds and made it suitable to run on massively parallel computers. The new cloud-resolving model (CRM) named System for Atmospheric Modeling, or SAM, has been applied to various interesting convection problems, such as, for example, self similarity of deep convection. The easy-to-use-model philosophy and ability to run on hundreds of processors have made SAM quite popular among cloud modelers; in fact, SAM has been used by more than a dozen scientists in the United States and Canada and helped to generate quite a few publications. Here is an incomplete list of organizations whose scientists have been using SAM in their research: Colorado State University, Pacific Northwest National Laboratory, University of Washington, Harvard University, University of Miami, University of British Columbia, University of Oklahoma, NOAA, NASA Langley, University of Hawaii, University of Wisconsin, Scripps Institution of Oceanography.