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ABSTRACT
We propose a new molecular simulation framework that combines the transferability, robustness, and chemical flexibility of an ab initio
method with the accuracy and efficiency of a machine learning model. The key to achieve this mix is to use a standard density functional
theory (DFT) simulation as a preprocessor for the atomic and molecular information, obtaining a good quality electronic density. General,
symmetry preserving, atom-centered electronic descriptors are then built from this density to train a neural network to correct the baseline
DFT energies and forces. These electronic descriptors encode much more information than local atomic environments, allowing a simple
neural network to reach the accuracy required for the problem of study at a negligible additional cost. The balance between accuracy and
efficiency is determined by the baseline simulation. This is shown in results where high level quantum chemical accuracy is obtained for
simulations of liquid water at standard DFT cost or where high level DFT-accuracy is achieved in simulations with a low-level baseline DFT
calculation at a significantly reduced cost.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114618., s

I. INTRODUCTION

The development of atomistic simulation methods that make
use of machine learning (ML) techniques to achieve close or beyond
ab initio level accuracy at a highly reduced computational cost is
proving to be an efficient and robust alternative to traditional force
field approaches.1–7 This high level of activity is facilitated and sup-
ported by the availability and continuous generation of larger and
improved databases of highly accurate calculations or experiments
both for molecular8–10 and solid systems.11–13 While in many cases,
newly proposed methodologies and force-fields are only at the proof
of concept stage, some of the most promising methods have already
produced results that provide new physical insight into challenging
problems.14 Beyond predicting atomic structures of complex materi-
als,15 they have been used to address problems previously inaccessi-
ble to ab initio level calculations such as the structure of the surface
of water or its temperature dependent dynamical properties using
the MB-pol model.16–20

However, even if all these new force fields are facilitating the
simulation of much larger systems and achieving longer dynamic

scales with near density functional theory (DFT) accuracy3,7,21,22

or beyond,4,5,23 this does not imply that DFT is becoming obso-
lete. There is still a need to obtain accurate energies, densities, and
other physical observables that can be derived from first-principles
methods such as DFT. Hence, developing approaches that aim to
improve DFT by searching for more accurate exchange and cor-
relation potentials using information from correlated wave func-
tion methods is a worthwhile endeavor. It is known that DFT-
based methods within their lower rungs of approximation to the
exchange and correlation (XC) energy struggle in simulating sys-
tems like water or ionic solutions.24–27 The use of more expensive
XC approximations, such as hybrid functionals,28 may deliver the
required accuracy; however, the size of systems for which these
simulations are feasible is limited. This trade-off between accu-
racy, flexibility, and computational cost seems to lie at the heart
of many problems the molecular science community is presently
facing.

Some progress has been made in the development of machine-
learned density functionals. Apart from promising efficient orbital-
free DFT calculations by learning the kinetic energy functional,29–31
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these methods have been shown to allow to skip self-consistent cal-
culations altogether by directly learning the map from atomic poten-
tial to electron density.32,33 While these applications still appear
to be limited to one-dimensional systems or small molecules,
other approaches have shown promising results in resolving this
size extensivity problem.34–37 The approach of Chandrasekaran
et al.37 seems to be very promising in that they also fit the
local density of states in addition to the density. They can
achieve highly accurate densities, and preliminary results suggest
that these densities are good enough for accurate energy predic-
tions.

In this work, we propose an alternative approach called
Machine Learned Correcting Functionals (MLCFs) which, rather
than replacing DFT, complements it by adding a machine learned
functional of the electron density, expanded into a set of local-
ized basis functions. Even though not explicitly shown here,
this machine-learned density functional, based on local electronic
descriptors, can in principle be used in self-consistent calculations.
Exploring this path will be the topic of future work. The princi-
pal concept of this new methodology could be termed “Informed
Machine Learning.” We argue that all the available physical insight
into a problem should be used to help the ML-model make its pre-
dictions and minimize its generalization error. In MLCFs, this trans-
lates to DFT assuming the role of a data-preprocessor that maps
the atomic coordinates to a self-consistent electron density which
is input into an artificial neural network (ANN). The ANN is then
fitted to the difference in energy and forces between the baseline
method which was used to obtain the electron density and a higher-
level reference method of choice. Thus, MLCFs draw upon and opti-
mize the strengths of DFT, which is effective in calculating mean
field electrostatic interactions, but often fails to accurately describe
nonlocal interactions rooted in quantum mechanics. At the same
time, DFT provides a solid foundation which the ML-model can fall
back on when faced with unseen scenarios in which it will likely fail
to make reliable predictions.

All results presented in this work were obtained with our MLCF
implementation, available at Ref. 38.

II. METHODS
A. Charge density representation

As in any machine learning application, the representation of
the data used for input (aka, the features) should encode as much
information in as few variables as possible to avoid redundancies and
make sure that the ANN model is quick to train and not prone to
overfitting. Furthermore, we require the number of descriptors to
scale linearly with the number of atoms in the system to guarantee
size extensivity of the energy.

To ensure that the model respects rotational symmetry, we
further impose the constraint that descriptors need to transform
covariantly under SO(3) rotations.

One way to create such a descriptor is to project the electron
density in real space onto a set of atom-centered orbitals, which
were in inspired by the work of Bartok et al. on representing chem-
ical environments.39 While completing this manuscript, the authors
became aware of the work by Grisafi et al.33 which uses a very similar
approach.

The angular and radial basis functions are given by spherical
harmonics Ym

l (θ,ϕ) and

ζ̃n(r) = {
1
N (r − ri)

2(ro − r)n+2, for r > ri and r < ro,
0, else

, (1)

respectively. Here, we have used a radius ro and a normalization fac-
tor N, the latter being determined by numerical integration. The
radial functions defined above correspond to the ones used by
Bartók et al.39 except for the addition of an inner cutoff radius ri
which we included to disregard the core area. Moreover, the expo-
nents were chosen so that the basis has vanishing first and second
derivatives at both cutoff radii to ensure smoothness at these points.
We found that this somewhat mitigates artifacts arising from the
discrete nature of the euclidean grid used to represent the electron
density.

After orthogonalizing the radial functions with the transforma-
tion

ζn(r) =∑
n′

S−1/2
nn′ ζ̃n(r), where Snn′ = ∫ drζ̃n(r)ζ̃n′(r), (2)

the full basis is given as ψnlm(r⃗) = Ym
l (θ,ϕ)ζn(r).

The descriptors cα,I
nlm for atom I of species α at position r⃗I can be

obtained by projecting the electron density ρ onto the corresponding
basis functions ψαnlm,

c̃α,I
nlm = ∫

r⃗
ρ(r⃗ − r⃗α,I)ψ∗αnlm(r⃗). (3)

Introduction of an atomic species label α has made it possible to have
different bases for distinct atomic species.

To ensure rotational invariance, the basis should be aligned
with a uniquely defined local coordinate system (LCS). Knowing the
Euler angles {α, β, γ} that relate the global coordinate system (GCS)
to the LCS, the rotated descriptors are given as

cnlm =∑
m′
(Dl(α,β, γ))−1

mm′ c̃nlm′ , (4)

withDl being the Wigner D-matrix for angular momentum.40–42 The
LCS of a given atom can be defined through the position of atoms in
its immediate environment.

Even though this approach has been proven to work for
machine learned force fields,3 it would be desirable to have a def-
inition of the LCS that is completely independent of the atomic
coordinates and only relies on electronic information.

Recognizing that the descriptors associated with the p-orbitals
c̃n1m transform like vectors under SO(3) rotations, we can use these
vectors to define a local coordinate system that only depends on the
electron density (see Appendixes A–E for more details).

Aligning the descriptors independently of structural variables
has the major advantage that conformers that are close in their elec-
tron densities are described by similar features. This is particularly
important for MLCFs that only correct the exchange correlation
energy Exc as these conformers will necessarily exhibit the same error
in Exc.

The ideal number of radial and angular basis functions as well
as the inner and outer cutoff radii can be determined by cross-
validation (CV). Doing so, the hyperparameters listed in Table I
were found to provide a good compromise between accuracy and
computational efficiency.
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TABLE I. Hyperparameters used to create the charge density descriptors from top to
bottom: Number of radial functions, maximum angular momentum, inner radial cutoff,
and outer radial cutoff. Radii are given in units of Angstrom.

Oxygen Hydrogen

nrad 2 2
lmax 2 1
ri 0.05 0.0
ro 1.0 1.5

B. Machine learning models
Inspired by the well-established Behler-Parrinello networks

(BPNs),21 the energy functional for a given number of molecules
was represented as an artificial neural network (ANN) consisting
of a sum of smaller atomic networks, each of which only sees the
local charge density around the atom it is associated with (see Fig. 1).
Furthermore, networks belonging to atoms of the same species are
identical to guarantee permutational invariance. Separate models
were trained directly on the force corrections to be used in molec-
ular dynamics (MD) simulations. Details about the force models are
provided in the Appendixes A–E.

Both models were trained using the Adam43 optimizer with
training rate α = 0.001 and decay rates β1 = 0.9 and β2 = 0.999.
The validation set was created by splitting off 20% from the original
training set, and the number and size of layers as well as the training
rate was determined using cross-validation. No mini-batches were
used for training, i.e., the entire training set was passed through the
neural network for every parameter update. The maximum number
of epochs was set to 40 000, but due to early stopping, this value was
never reached. Typical numbers of training epochs ranged between
10 000 and 30 000 and training times were of the order of minutes.
A network with three layers of 8 nodes and one with three layers of
16 nodes were determined to have the optimal accuracy for energy
and force predictions, respectively; however, satisfying results were
obtained with a wide variety of model sizes.

FIG. 1. Architecture of a Behler-Parrinello type neural network. Starting with a
given configuration, the self-consistent electron density is computed with the base-
line DFT. The density is then encoded in descriptors that are fed into artificial
neural networks (ANNs) which calculate atomic contributions to the total energy
correction ΔE.

The sigmoid function was chosen as activation,

f (x) = 1
1 + e−x

, (5)

as it was determined through cross-validation to be less prone to
over-fitting than other possible choices such as the hyperbolic tan-
gent or the rectified linear unit. One possible problem that practi-
tioners should be aware of when using sigmoid or related functions
as activations is what is commonly known as the vanishing gradi-
ent problem. The vanishing gradient problem stems from the fact
that for very large and small input values, the derivative of the sig-
moid function vanishes, which makes training exceedingly difficult
for networks with many layers. This is usually mitigated by using
rectified linear units (ReLU) as activation in deep neural networks.44

We have not encountered any problems during the training pro-
cess, which is most likely due to the limited depth of our neural
network.

III. RESULTS
A. Gas phase water

We tested our method on water clusters of varying size. The
baseline calculations were conducted using SIESTA45 with a quadru-
ple zeta doubly polarized basis set and a van der Waals density
functional of Dion et al.46 with GGA exchange modified by Berland
and Hyldgaard (vdW-cx).47 This XC functional has been shown
to be as good as other vdW-type functionals in describing liquid
water.48

For the reference energies, we use the MB-pol force field16–18

which is fitted to highly accurate coupled cluster calculations of
water monomers and clusters. MB-pol has been shown to accu-
rately reproduce the structural and thermodynamic properties of
condensed phases of water; hence, it is a superior model to any
vdW or GGA XC functional. It is important to emphasize that
our method is of course not limited to the use of force-fields
as a reference method. As only moderately sized data sets of
relatively small systems are needed, high level quantum chem-
istry calculations to produce these data sets are expensive but
feasible.

The MLCF was trained to interpolate between the baseline and
reference method, i.e., the target values used for fitting are given as
the differences in energy ΔE = Eref − Ebase.

The data set comprised 2000 dimers and 1500 trimer config-
urations that were all sampled from the data that was used to fit
MB-pol16–18 and an additional 682 monomer configurations. Of
these monomers, 300 had bond lengths and angles uniformly dis-
tributed on a grid between 0.90 and 1.07 Å and 90○ and 118○. The
remaining 382 monomers were sampled from the dimer configura-
tions, only keeping structures that were not within the previously
defined parameter grid.

The data were split into 80% training and 20% hold-out set.
Figure 2 shows how the generalization error (i.e., the error on the
test set) changes with training set size. The reduced training sets were
sampled from the original set while maintaining the relative contri-
butions of monomers, dimers, and trimers. However, a minimum
amount of two structures per subset was enforced. As expected,49

the training curve follows a power law.
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FIG. 2. Root mean square error (RMSE) on test set of fixed size as the number
of training samples is varied. Reduced sets were sampled from the full train-
ing set described in the main text while keeping the relative contributions of
monomers, dimers, and trimers constant. The shaded region indicates the 95%
confidence interval which was obtained by resampling from the test set 10 000
times.

We further created samples of larger water clusters with n = 4,
5, 8, 16 molecules (50 samples each) for testing the size extensivity
of the network.

In Table II, the errors in relative energies of isomers are split up
into root mean square (rms) error, mean absolute error (MAE), and
maximum (absolute) error.

As can be seen in Table II, despite only being trained on sys-
tems with up to three molecules, our model performs well for all
cluster sizes and significantly decreases errors in relative energies
of isomers, all rms errors being below 5 meV/Molecule and mean
absolute errors below 3 meV/Molecule. Moreover, Fig. 3 shows that
the overall energy ordering of hexamer structures is correctly repro-
duced by the MLCF, a task that has so far proven largely elusive to
GGA-level DFT calculations.48

To gain further insights, we can follow the approach of previous
works48,50 and split up the total energy of water clusters into their
n-body contributions. This was done on the same data sets that were
used in Ref. 48 to optimize the GGA exchange enhancement factor
for water systems.

TABLE II. Model performance on test sets containing clusters of different sizes.
Reported are the root mean square error (RMSE), mean absolute error (MAE) and,
maximum absolute error (max. Error), given in meV/Molecule. The baseline method
errors are given in parentheses.

No. Molecules RMSE MAE Max. Error

1 2.29(53.19) 1.25(43.13) 14.71(151.19)
2 4.33(40.17) 2.91(31.28) 31.03(136.91)
3 2.89(28.25) 2.16(22.29) 12.27(75.20)
4 2.79(9.69) 2.15(7.93) 7.70(24.95)
5 2.64(11.24) 2.19(8.97) 6.23(36.69)
8 3.43(9.26) 2.72(7.34) 8.05(22.67)
16 2.75(6.28) 2.15(5.03) 6.19(17.15)

FIG. 3. Energies of water hexamers with respect to the prism isomer, which is
correctly determined to be the most stable structure by the MLCF.

Figure 4 shows that our model not only corrects the predom-
inant errors in the one body energy (Table II) but also improves
two and three body energies. This might seem surprising as the
MLCF is only provided with the local charge density around each
atom. However, the model seems to learn how to infer higher order
interaction energies from correlations in the local charge density.
This indicates that the long range and possibly nonlocal interac-
tions are encoded within local density spatial correlations, enabling
us to use radial cutoffs for the descriptors that are very short (see
Table I), comparable to the nearest neighbor distance, which is
about 1 Å in water molecules. In order to obtain similar accu-
racy using only structural information, much larger cutoffs are
needed.39,50

B. Comparison with machine learned force fields
Rather than competing with state of the art machine learned

force fields, our work is aimed at investigating possible paths toward
machine learned functionals that use the electron density as input.
Nevertheless, it is instructive to compare the performance of our
model to ML methods that make predictions using only geomet-
ric information. In particular, we want to investigate their capability
to extrapolate, which restricts our possible choices to methods that
learn a size extensive representation of the total energy. This dis-
qualifies models that assume a fixed input size such as the sGDML
approach by Chmiela et al.4,23,51,52 Out of the plethora of pub-
licly available ML force-fields, we chose to compare our method to
SchNet5,53 and a Behler-Parrinello network (BPN)21 with weighted
atom-centered symmetry functions (WACSFs)54 both implemented
in the open-source library SchNetPack.55

For a fair comparison, we require these force fields to merely
learn the difference between the reference (MB-pol) and base-
line (vdW-cx) energies and we will therefore refer to them as
Δ-SchNet and Δ-WACSF from here on. In analogy to our analy-
sis for MLCF, we want to test how a model trained on monomers,
dimers, and trimers extrapolates to larger water clusters. The per-
formance of non-Δ models, i.e., models that are trained on total
energies, is shown in Fig. 9 in the Appendixes A–E. All non-Δ mod-
els trained show generalization errors above 10 meV/H2O and can
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FIG. 4. Predicted vs reference two (left)
and three (right) body energies for the
data sets taken from Ref. 48. For the
two body energies, the RMSE is 4.20
for the baseline method and 2.80 for the
MLCF corrected method. For the three
body energies, the errors are 7.10 and
3.56, respectively. Errors are given in
meV/Molecule.

therefore not compete in accuracy with MLCF or their Δ-learning
counterparts.

It is not clear, a priori, which is the appropriate cutoff distance
for the force fields. For non-Δ models, it is obvious that the cutoff
should be chosen equal to the largest atomic distance in the train-
ing set, which is about 8 Å. Intuitively we would expect that for
Δ-models, a smaller cutoff will be sufficient and maybe even bene-
ficial for the model’s capability to extrapolate. Instead of fixing the
radial cutoff, we opted to train a collection of models with cut-
off ranging from 2 to 8 Å. For every choice of cutoff, the opti-
mal set of hyperparameters was determined by a grid-search and
cross-validation (see Appendixes A–E for details).

As can be seen in Fig. 5, for both Δ-SchNet and Δ-WACSF,
a cutoff of 4 Å results in the best extrapolation to larger clus-
ters. Δ-SchNet outperforms Δ-WACSF for small clusters but per-
forms worse in terms of extrapolation. Δ-SchNet is slightly more
accurate than MLCF for cluster sizes below 5 molecules, but both
force-fields are less capable of extrapolating to large clusters than
MLCF. It is instructive to see that using the electron density as
input, smaller cutoff radii (1.0 Å–1.5 Å) are sufficient to reach
competitive accuracy. This suggests that the network learns to
infer how nonlocal information is encoded in the local charge
density.

To go one step further, we would like to compare the mod-
els’ performance in systems with other molecules present. For
this, we used the publicly available data set S66x8, which con-
tains dissociation curves for 66 noncovalent complexes relevant to
biomolecular structures.56 We limited our calculations to a sub-
set with complexes that contain at least one water molecule. For
Δ-SchNet and Δ-WACSF, we used the models with cutoff 4 Å from
above, the MLCF remained unchanged to the one used for water
clusters.

By design, the MLCF is only ever used for atomic species that
it was trained on, i.e., oxygen and hydrogen. For the force-fields,
best results were achieved if corrections were restricted to these ele-
ments as well. Therefore, when using these force-fields, we masked
out all other atoms before creating the input features. A comparison
of all three methods for a selected subset can be seen in Fig. 6. None
of the methods correctly predicts the dissociation curve for water
and methylamine [Fig. 6(d)]. This is due to the fact that the H–N
hydrogen bond was not contained in the training set. In fact, the

nitrogen atom is “invisible” to the machine learning method in all
cases. For the systems containing methanol, Δ-WACSF and MLCF
both make reasonable predictions, the latter being more accurate
than the former in the case where methanol acts as the donor
molecule. In all cases, Δ-SchNet shows deviations for large distances
and around the equilibrium distance.

The most instructive example is given by dissociation curve for
n-methylacetamine and water. The crucial difference to the systems
above is that now the hydrogen atom participating in the bond is
covalently bonded to a nitrogen atom. In terms of the electron den-
sity, the changes to OH are small, which explains why MLCF still
performs well. However, making use of only structural information,

FIG. 5. Root mean squared errors (RMSEs) of Δ-SchNet (top) and Δ-WACSF
(bottom) models trained for different cutoff radii (see legend) on water monomers,
dimers, and trimers and tested on random clusters of increasing size. The errors
are normalized by dividing them through the RMSE of the underlying baseline
method (vdW-cx) and compared to those of MLCF (purple line) which can also be
found in Table II.
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FIG. 6. Comparison of, from left to right, Δ-WACSF, Δ-SchNet, and MLCF on a subset of dissociation curves taken from the s66x856 data set. From top to bottom, the figures
describe hydrogen bonds between (a) water and methanol, (b) methanol and water, (c) n-methylacetamine (C3H7ON) and water, and (d) water and methylamine (CH3NH2),
where the molecule listed first is understood to be the hydrogen donor. The energies depicted correspond to binding energies for the reference calculations (orange) and total
energies for the baseline (blue) and corrected (black) calculations. As the molecules stay rigid during the relative displacement, binding and total energies merely differ by a
constant. We therefore shifted every curve by its mean energy to align them and draw better comparisons between the methods. The depicted distances were normalized by
dividing them through their respective equilibrium values, which were determined with MP2.

both force-fields perform worse than the baseline method in this
case.

We do want to stress that this comparison is not intended to
disqualify any of the above tested force-fields. These methods are
extremely accurate and efficient at the purposes they are developed
for. We merely use the above example to highlight tasks where the
MLCF method outperforms these approaches.

C. Liquid water

Having proven successful for gas-phase calculations, we went
on to assess the method’s performance in molecular dynamics sim-
ulations on liquid water. For reasons of practicality, we opted to
replace the previously employed van der Waals functional with the
faster Perdew-Burke-Ernzerhof (PBE)57 functional. We trained a

J. Chem. Phys. 151, 144102 (2019); doi: 10.1063/1.5114618 151, 144102-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

MLCF to interpolate between this baseline method and MB-pol,
which has been shown to produce pair correlation functions close
to experimental results. Further details about the training data set
used are given in the Appendixes A–E.

We conducted a DFT-based molecular dynamics (MD) simu-
lation of 128 water molecules at experimental density in a periodic
box using a Nose-Hoover thermostat58 at a temperature of 300 K.
The simulation length was 10 ps with a time step of 0.5 fs using 4 ps
for equilibration and 6 ps to create the correlation functions. As can
be seen in the top section of Fig. 7, our MLCF provides a significant
improvement over PBE, which is known to over-structure liquid
water. The MCLF approach also corrects the dynamical properties
of the baseline calculation, bringing them to the level of the refer-
ence method. This can be seen in the vibrational density of states
(VDOS) plots shown in the Appendixes A–E.

D. Basis set correction
Beyond correcting the density functional approximation,

MLCFs can also be used to extrapolate between two given basis
sets. Thus, extremely fast calculations can be performed with min-
imal [single zeta (SZ)] basis-sets that with the help of MLCFs

FIG. 7. Oxygen-oxygen radial distribution functions gOO(r) for two different appli-
cations of MLCFs. Top: Correcting for errors in the XC functional by interpolating
between PBE and MB-pol. Bottom: Accelerating DFT calculations by correcting for
both functional and basis-set related convergence errors, combining MLCF with
the time step mixing method proposed by Anglada et al.59 Interpolation between
a quick and dirty PBE(SZ) simulation and a slow and more accurate vdW-cx(DZP)
simulations. n indicates the number of fast steps needed before correcting with a
well converged step.

are then brought to the accuracy of more conservative basis
sizes.

Here, it should be noted that MLCFs rely upon the quality
of the electron density used as input. Following an approach by
Kim et al.,60 the error that the MLCF is trained to correct can be
decomposed as

ΔE = Eref [nref ] − Ebase[nbase] = ΔEF + ΔED, (6)

with EF = Eref [nbase] − Ebase[nbase] and ED = Eref [nref ] − Eref [nbase]
being the functional and density driven error, respectively. By
design, MLCFs are only effective at correcting functional driven
errors as deviations in the density induce long-range effects through
electrostatic interactions that are hard to correct with our semilocal
approach. This generally does not pose any serious problems as most
density functional approximations yield a good quality electron den-
sity. Using very sparse basis sets, however, imposes an upper limit
on the accuracy of the density, making density driven errors become
dominant.

It turns out that despite the inaccuracies produced by the small
basis set, we can still obtain satisfactory results in MD simulations
by using a method developed by Anglada et al.59 In their paper, they
propose to alternate fast steps calculated with a cheaper, less accurate
method with slow steps obtained with a well converged method. The
forces used to integrate the equations of motion with a time step Δt
are given as F⃗(t) = F⃗fast(t)+ΔF⃗(t), where the correction term ΔF⃗(t)
is defined as

ΔF⃗ = {
nδF⃗, if (t/Δt mod n = 0),
0, else,

(7)

with δF⃗ = F⃗slow − F⃗fast . The motivation behind this idea is that
the error δF⃗ is small compared to the absolute forces and relatively
smooth over time. Therefore, it is sufficient to only correct for this
error every n steps, the limiting value of n being dependent on both
the system and the accuracy of the fast method.

To test this, we ran AIMD simulations of 64 water molecules,
at 300 K and experimental density for 10 ps.

The fast steps were calculated using the PBE exchange-
correlation functional with a single zeta basis set and subsequently
corrected with an adequately trained MLCF. For the slow, well-
converged steps, we used the vdW-cx functional and a double zeta
polarized (DZP) basis set. The MLCF was trained to lift the accuracy
of the fast method to that of the slow one. For that, we used the same
procedure and data set as for the gas-phase MLCF discussed above.
However, we re-did all the DFT calculations replacing vdW-cx by
PBE with single zeta basis set and MB-pol by vdW-cx with a polar-
ized double zeta basis set, adjusting baseline and reference methods
to fit the problem at hand.

As can be seen in the bottom part of Fig. 7, the radial distribu-
tion function remains unchanged for n ≤ 6 and reasonable results
can be achieved up to n ≤ 8.

It is important to point out that these results could only be
obtained by correcting the fast steps with an MLCF. In its orig-
inal form, even though proven successful for systems like liq-
uid silica,59 the mixing method failed for water. Furthermore, the
upper limit for the number of subsequent fast steps nlim is strongly
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system-dependent and rigorous testing should be conducted before
using this mixing scheme. However, if carefully used, this method
promises significant speed-ups that are roughly equal to nlim for large
system sizes (see Appendixes A–E for detailed analysis).

IV. CONCLUSION
In conclusion, we have presented and tested a new molecu-

lar simulation framework in which the electronic density is used to
train a neural network to correct baseline DFT energies and forces
to the accuracy provided by a higher level method. Our results indi-
cate that real space semilocal correlations of the electronic density
as encoded in our localized density desriptors contain information
about longer range effects. These effects can be corrected through the
use of a neural network trained on purely local data, an observation
that might support the potential for developing machine learned
density functionals using local density descriptors33 and total energy
targets.

The scope of this method is not the same as that of machine
learned force fields, given that it aims to stay within the realm of
DFT. However, we have been able to show that indeed the use of
local descriptors built from the electronic density outperforms those
methods in terms of transferability. This suggests that electronic
descriptors such as the ones proposed here could be explored to
improve the accuracy of force fields.

After completion of this manuscript, the authors became aware
of work by Bogojeski et al.61 that is very closely related to the work
presented here. Similar to our approach, Bogojeski et al. use density-
based inputs and Δ-learning to achieve quantum chemical accuracy.
The main difference between the two approaches lies in the choice of
basis functions and the way symmetries are encoded. In the method
of Bogojeski et al., the molecule is first aligned with a global coor-
dinate system which is defined through some molecular axes. The
electron density is subsequently expanded in a Fourier basis. These
design choices seem to restrict their method to systems of fixed
size, and results presented are limited to small and medium sized
molecules. In contrast, as we have shown above, by using semilocal,
atom-centered basis functions, our method is size-extensive and can
therefore extrapolate to systems it was not explicitly trained on, in
particular, condensed phases.
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APPENDIX A: COORDINATE SYSTEMS
In this work, several definitions of a local coordinate system

(LCS) are used.

FIG. 8. Definition of the (a) electronic, (b) nearest-neighbor, and (c) molecular local
coordinate system.

1. Electronic
Given a set of descriptors {c̃nlm} for a given atom, the descrip-

tors associated with the p-orbitals c̃n1m transform like vectors under
SO(3) rotations. Starting with n = 1 and l = 1, the corresponding
descriptor vector c̃11m, after being brought into its real form and
normalized, is used as the first local axis. Increasing n allows one to
find a second vector of l = 1 descriptors that, using Gram-Schmidt
orthogonalization, defines the second local axis.

In the example given in Fig. 8(a), the first vector c̃11m (dashed
red line) picks up on the asymmetry of the covalent bonds and is
bent toward the closer hydrogen atom, whereas the second vector
c̃21m (dashed green line) points toward the lone pair. Problems may
arise if all p-descriptors are collinear as is the case for highly symmet-
ric systems such as a water monomer with covalent bonds of equal
length. In cases like this, one has to revert to using the nearest neigh-
bor rule as described below to determine the second axis. However,
extended systems are rarely this symmetrical and an increase in the
number of radial functions is usually enough to resolve issues of lin-
ear dependence and find a set of p-descriptors that span a coordinate
system.

2. Nearest neighbor
To determine the LCS around a given atom, one can also use

structural information about the atom’s immediate environment.
The first axis is defined as the direction to the atom’s nearest neigh-
bor. The second axis is simply given by the direction to the next
nearest neighbor, orthogonalized with respect to axis number one.
If all three atoms happen to lie on a line, more distant atoms are
taken into consideration until noncolinearity is achieved

3. Molecular
For nonreactive models, the molecular axes can be used as a

local coordinate system. The axis assignment is hereby arbitrary, but
following convention, we define the y-axis as the bisector (M) of the
HOH-angle, the x-axis as the one parallel to the molecular plane, and
the z-axis orthogonal to it [see Fig. 8(c)].

APPENDIX B: DETAILS ON COMPARISON
WITH FORCE FIELDS

We determined the optimal values for a selected subset of
hyperparameters for both SchNet and WACSF by cross-validation
(CV), where the validation set was identical to the one used for
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TABLE III. Optimal hyperparameters determined through cross-validation for SchNet.
The hyperparameters that were optimized were the dimension of the embedding
space denoted as “features” and the number of interaction layers. An “x” in the column
named Δ denotes that the model was trained to correct vdW-cx.

Cutoff Δ Features Interaction layers

2.0 x 128 4
4.0 x 256 4
6.0 x 256 3
8.0 x 256 2
2.0 256 3
4.0 256 3
6.0 256 4
8.0 256 4

MLCF. For SchNet, we fixed the number if Gaussians used to
expand the interatomic distance to 25, the dimension of the embed-
ding space (features), as well as the number of interaction layers
were determined by CV. For WACSF, the number of fully con-
nected layers in the neural network that acts as an estimator was
fixed to three, whereas the number of nodes in each layer as well
as the number of radial and angular basis functions was deter-
mined by CV. For both SchNet and WACSF, a batch size of 100
together with a maximum number of training epochs of 300 was
employed. Adam43 together with a learning rate decay of 0.5, and
early stopping was used for optimization. The optimal set of hyper-
parameters is shown in Tables III and IV for SchNet and WACSF,
respectively.

Figure 9 shows the performance of non-Δ models compared
to that of MLCF. Even for cluster sizes contained in the training
set, the force-fields cannot reach competitive accuracy. This is due
to the limited size of the training set. It should be noted, how-
ever, that even though an increase in training set size will most
likely lead to a better performance for cluster sizes 1–3, a sig-
nificant improvement in accuracy for larger clusters is not to be
expected as the model will not have enough information to extrapo-
late to these systems. Better results can be achieved if the force fields

TABLE IV. Optimal hyperparameters determined through cross-validation for
WACSF. The hyperparameters that were optimized were the number of angular and
radial basis functions and the number of nodes in the three layer fully connected neu-
ral network. An “x” in the column named Δ denotes that the model was trained to
correct vdW-cx.

Cutoff Δ Angular Nodes Radial

2.0 x 8 128 22
4.0 x 8 128 22
6.0 x 4 128 66
8.0 x 8 128 66
2.0 8 128 66
4.0 8 128 44
6.0 4 128 66
8.0 6 128 66

FIG. 9. Root mean squared errors (RMSE) in meV per molecule of SchNet (top)
and WACSF (bottom) models trained for different cutoff radii (see legend) on water
monomers, dimers, and trimers and tested on random clusters of increasing size.
The errors are compared to those of MLCF (purple line) which can also be found
in Table II.

are trained to correct the baseline method as shown in the main
text.

APPENDIX C: FORCE MODEL
Given that the mapping from atomic configuration to electron

density is obtained by conducting a full self-consistent DFT calcula-
tion, the forces cannot be derived from the energy functional as the
derivatives ∂ΔE/∂ri ,α = ΔFi ,α are unknown.

We therefore have to train a model to directly predict the
force corrections ΔF⃗, where again each atomic species is treated
with a separate model. Taking derivatives of a machine learned
energy model is known to amplify its errors. By using a model
directly trained on forces, we can avoid this problem. However,
as there is no coupling between energy and force models, the
resulting method does not exactly preserve energy and momen-
tum. These effects are due to and thus comparable in magni-
tude to the fitting error of the force MLCF which in our case
is of the order of 0.01 eV/Å. As an ad-hoc solution for our
molecular dynamics simulations, we manually set the mean force
acting on the system to zero at every time step, making sure
that the relative acceleration between oxygen and hydrogen atoms
remained unaltered. Ongoing research is being conducted into how
energy and momentum conservation can be included in the fitting
procedure.

APPENDIX D: MOLECULAR DYNAMICS
To test our method’s performance in molecular dynamics

simulations, we trained an MLCF to interpolate between PBE57
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(baseline) and MB-pol16–18 (reference). The previously employed
quadruple zeta doubly polarized was replaced by a faster double zeta
polarized (DZP) basis set, and the real space mesh cutoff energy was
reduced from 300 Ry to 200 Ry. This real space cutoff can be inter-
preted as the upper limit for the kinetic energy of plane waves that
can be represented on this grid without aliasing.

Moving to condensed phase systems, the electron density and
thereby the descriptors undergo significant changes, making an
MLCF trained on only small clusters inaccurate. The most obvi-
ous remedy is to simply train the MLCF on condensed phase data.
This, however, has the drawback that reference calculations become
increasingly costly. We avoided this issue by training the model
on electron densities of 16(H2O) clusters that were electrostatically
embedded in liquid water modeled by TIP4P/2005,62 opening the
possibility of using more expensive, wave function based methods
to perform reference calculations in the future. In detail, this means
that a data set was created by sampling a random molecule and its
15 nearest neighbors from snapshots of an MD simulation and treat-
ing all remaining water molecules in the snapshot with TIP4P/2005.
Doing so, the number of hydrogen bonds that the central molecule

forms with its neighbors was used as a stratifying parameter during
the sampling. For the descriptor alignment, we chose to employ the
aforementioned nearest-neighbor rule. To obtain the target energies
and forces, the embedding was removed and calculations were per-
formed on clusters only, thereby restricting the correction to short-
range effects. Subsequently, only the central molecule was used in
fitting the force corrections.

For the MD simulations that used a single zeta (SZ) basis as
baseline method, we found that a model trained on smaller clus-
ters (monomers, dimers, and trimers) exhibited sufficient accuracy.
Including larger clusters or using embedding did not lead to any
significant improvement. We accredit this to the “stiffness” of the
SZ basis set which is not capable of describing bonding and polar-
ization effects, making electron densities of small clusters and con-
densed phases practically indistinguishable. We found, however,
that using molecular local coordinate systems (as opposed to nearest
neighbor or electronic ones) lead to a slight improvement in model
performance.

In addition to the oxygen-oxygen pair correlation function
which can be found in the main text, Figs. 10 and 11 show the OH

FIG. 10. (a) and (b) Radial distribution functions and (c) vibrational density of states for an MLCF that is trained to correct errors in the XC functional by interpolating between
PBE and MB-pol.
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FIG. 11. (a) and (b) Radial distribution functions and (c) vibrational density of states. MLCF is used to accelerate DFT calculations by correcting for both functional and
basis-set related convergence errors, combining MLCF with the time step mixing method proposed by Anglada et al.59 Interpolation between a quick and dirty PBE(SZ)
simulation and a slow and more accurate vdW-cx(DZP) simulations. n indicates the number of fast steps needed before correcting with a well converged step.

and HH correlation functions and the vibrational density of states
(VDOS) which was obtained by taking the Fourier-transform of the
velocity autocorrelation function.

APPENDIX E: SPEED-UP
The speed-up that can be achieved with the mixing method by

Anglada et al.59 depends crucially on both the mixing parameter n
and the ratio between the time it takes to propagate the system with
the fast method tf and the time it takes with the slower, accurate
method ts. Alternating (n-1) fast steps with one slow step, the speed-
up η is given by

η = nts
(n − 1)tf + ts

. (E1)

Figure 12 shows η obtained if PBE with SZ basis and vdW-cx47 with
DZP are mixed for which tf ≈ 35 s and ts ≈ 423 s (N = 64) and tf ≈ 89 s
and ts ≈ 2779 s (N = 128). The values are obtained for calculations on

FIG. 12. Speed-up obtained by mixing PBE(SZ) with vdW-cx(DZP) for finite size
systems compared to the speed-up that would be achieved for an algorithm that
scales strictly cubic in the number of orbitals. The color gradient indicates the
method’s reliability to reproduce the reference method for a given value of n.
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a single Intel Xeon E5-2683v3 CPU and compared to the theo-
retical speed-up for an algorithm that is strictly cubic scaling in
the number of orbitals. We see that for large enough system sizes
η ≈ n.
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