Next Generation Bayesian Methods for Complex Systems: Theory and Implementation

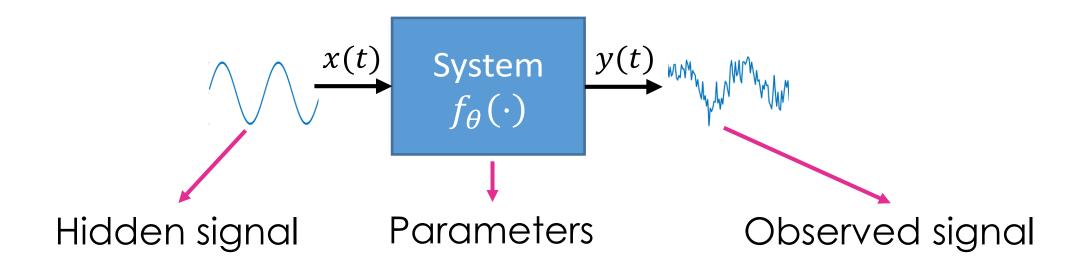
Yousef H. El-Laham 25 July 2019

Outline

- 1. Motivation
- 2. Research Overview
- 3. Computational Aspects
- 4. Interdisciplinary Work
- 5. Timeline
- 6. Conclusions

Complex Systems

Motivation: Understanding how complex systems work.

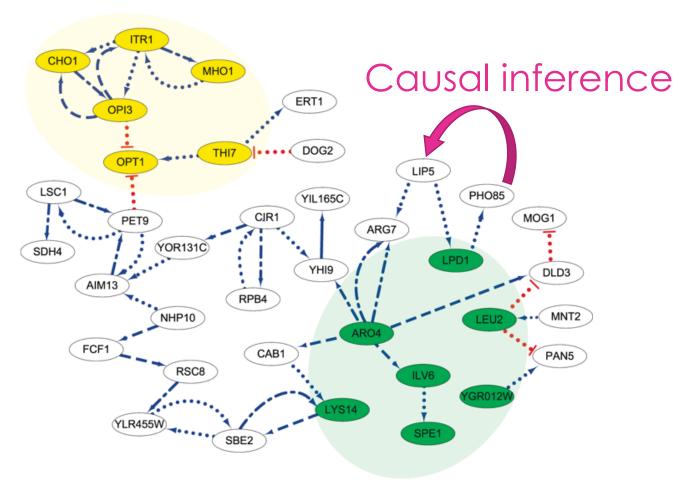


 We call a system "complex" if the number of unknown parameters that represent the system is large.

Financial Market

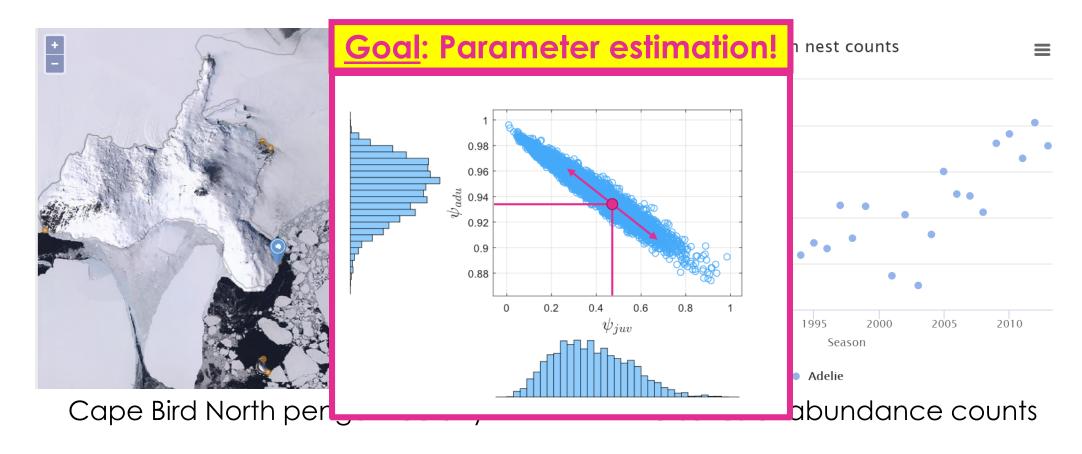
S&P 500 index from dates 05/2018-05/2019

Gene Regulatory Networks



Network describing the interaction of genes.

Population Dynamics



$$Count[t] = f(x_t, \psi_{juv}, \psi_{adu}) + error$$

Bayesian Workflow Prior $p(\mathbf{y}|\boldsymbol{\theta})$ Choose a Infer model model parameters Likelihood Posterior Criticize the model **Observations** Model parameters

Bayes' Theorem

- Our goal is to determine the posterior distribution of the unknown model parameters θ .
- We quantify the posterior via Bayes theorem:

$$p(\boldsymbol{\theta}|\mathbf{y}) = \frac{p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{y})} \propto p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

likely a given parameter "generated" the data

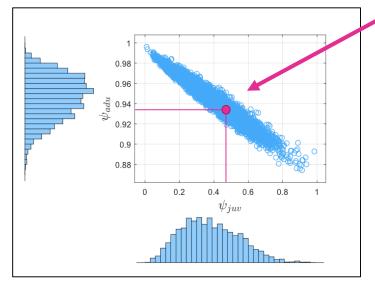
The <u>likelihood</u> tells us how The <u>prior</u> encodes domain expert knowledge about the parameter

What Do We Want?

- We can usually evaluate something proportional to the posterior. But is that enough?
- What kind of quantities are we interested in?

$$\operatorname{Avg}\left[\boldsymbol{\theta}|\mathbf{y}_{1:T}\right] = \int \boldsymbol{\theta} \times p(\boldsymbol{\theta}|\mathbf{y}_{1:t}) d\boldsymbol{\theta} \quad \begin{array}{c} \text{computing this} \\ \text{integral in a closed-} \end{array}$$

In most cases, computing this integral in a closed form expression is impossible!



We need to use computers to numerically <u>compute</u> these complex integrals!

Monte Carlo Methods

 The theory of Monte Carlo methods tells us how we can se crazy integrals.

use **random**

First, we draw

Unfortunately, in most useful models, we cannot sample directly from the posterior! We need an alternative solution... 1 XV & [V| **y** 1:T]

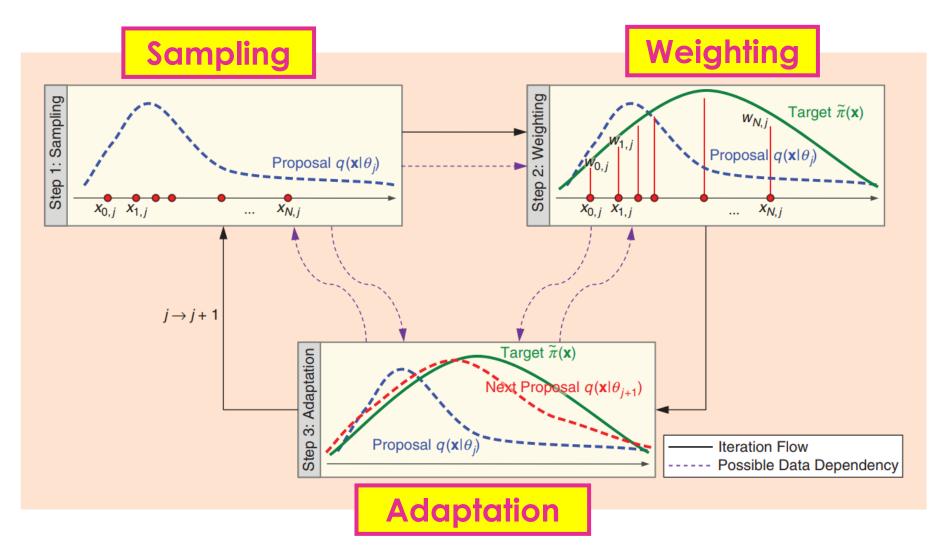
 $oldsymbol{ heta}(oldsymbol{ heta}^{(2)},...,oldsymbol{ heta}^{(M)}$ can oximate the est:

distribution...

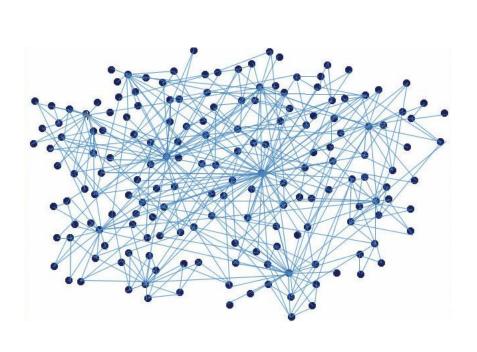
$$\int_{M}^{\infty} \frac{\mathbf{\theta} \times p(\mathbf{\theta}|\mathbf{y}_{1:t})d\mathbf{\theta}}{\sum_{M}^{\infty} \mathbf{\theta}^{(m)}}$$

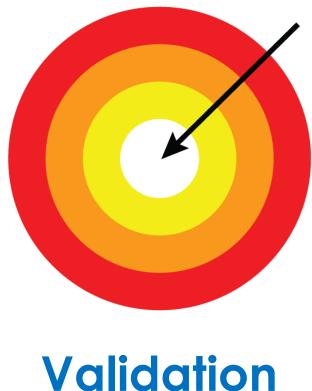
Blue dots = Samples

Adaptive Importance Sampling (AIS)



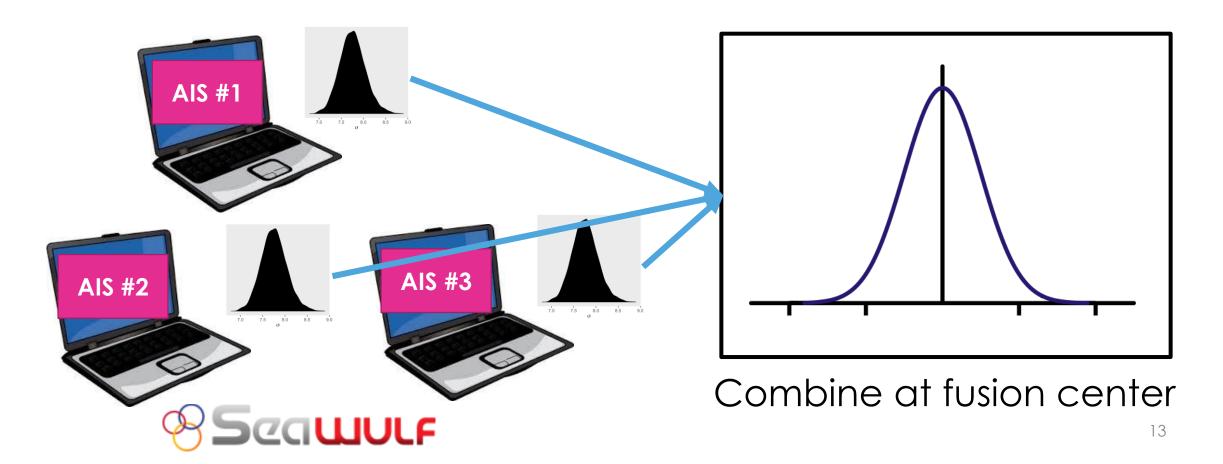
Computational Aspects



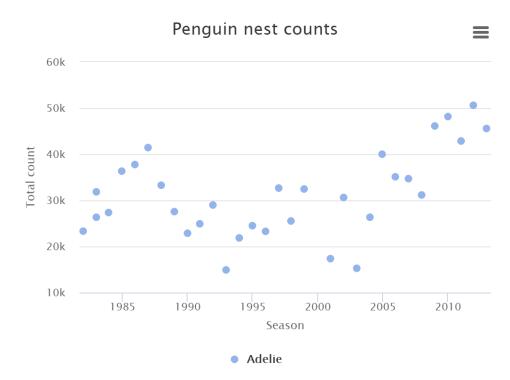


Parallel Implementation

Luckily for us, AIS is an easily parallelizable algorithm!



Penguin Population Dynamics

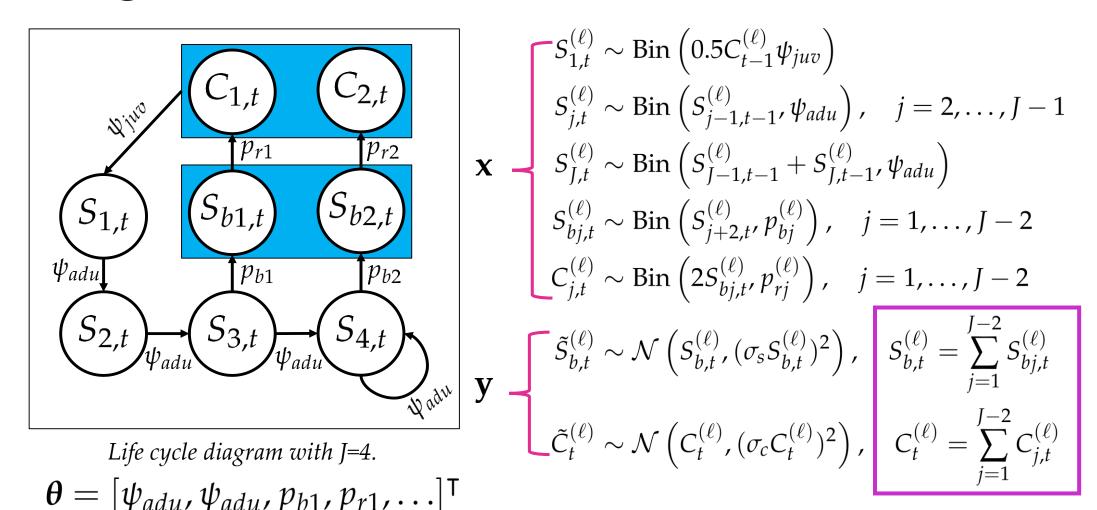


Time-series of abundance counts for a particular penguin colony.

Banded Adélie penguin.

We want to understand this system without using mark-recapture!

Stage-Structured Model

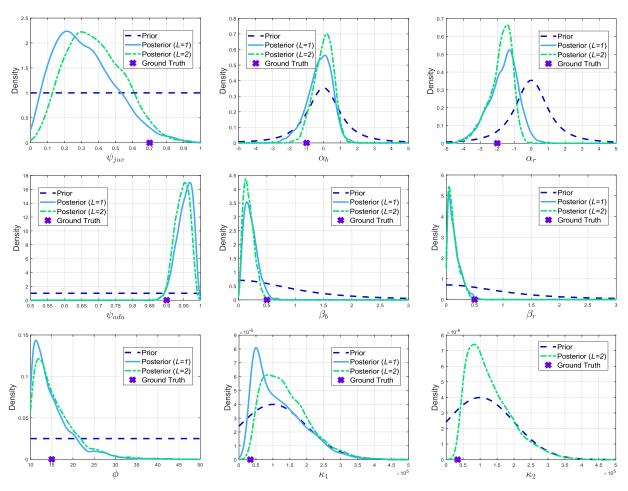


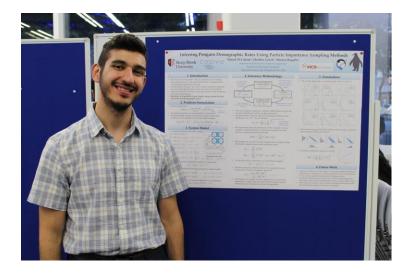
We observe a sum of the states of interest, but not each individual age class!

Goals of Interdisciplinary Work

- We address the following research questions:
 - 1. Using the framework of Bayesian inference, what can we learn about the parameters?
 - 2. If we use data across multiple sites and assume they share most parameters, does inference become easier or harder?
 - 3. Is it possible to learn something in the case that there is a lot of missing data?
 - 4. How can we scale our inference algorithms to hundreds of time-series?

Preliminary Results





Work presented at MLSS 2019 in London!

So far, we have some results on synthetic data!

Timeline

Sep 2019

Finalize results on synthetic data for penguin problem

Nov 2019

Submit a journal article about my work on scaling AIS algorithms

Mar 2020

Begin to address the problems of dealing with the "big-data" scenario

Aug 2020

Aug 2019

Oct 2019

Obtain results for real-penguin data

Jan 2020

Try to start a student-run machine learning tutorial series through the IACS

April 2020

Develop an AIS library designed for parallel implementation

Jul 2020

Start writing a draft of my dissertation

Collaborator (Theory)

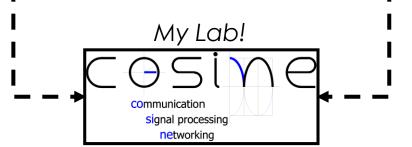
Dr. Petar DjurićElectrical Engineering
Department Chair

Principal Investigator (PI)

Dr. Mónica BugalloElectrical Engineering
Director of WISE

Collaborator (Application)

Dr. Heather LynchEcology & Evolution
IACS Faculty Member



Mapping Application for Penguin Populations and Projected Dynamics

Thank you!