## Quantum Computing

### with physics and for physics

Yanzhu Chen
Department of Physics and Astronomy
C.N. Yang Institute for Theoretical Physics

Advisor: Tzu-Chieh Wei

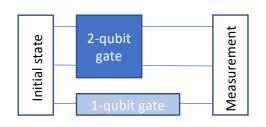
July 25, 2019



## Quantum computing $|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$

$$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$


#### Qubit

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

- 2 dimensional Hilbert space: a generic state is  $\alpha |0\rangle + \beta |1\rangle$
- Computational basis  $|0\rangle$ ,  $|1\rangle$  (orthonormal)

#### Entanglement

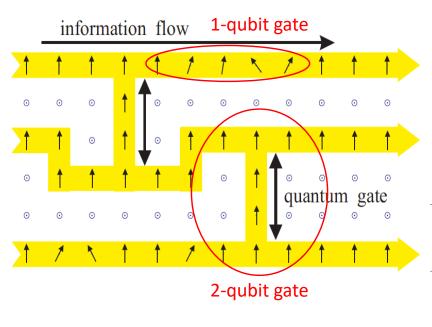
- Failure to be written as a product state (e.g.  $|\phi\rangle|\varphi\rangle$ )
- e.g. an entangled state for two qubits  $\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$



### Unitary operation

- Universal set: all 1-qubit rotations and 1 non-trivial 2-qubit gate
- Examples:

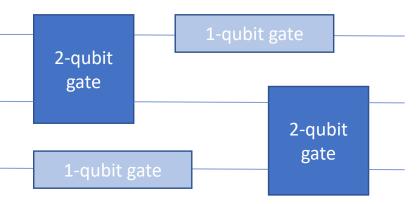
$$X = \sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad Y = \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad Z = \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$


$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \qquad \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

### Outline

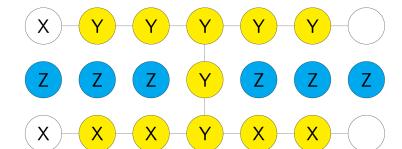
- Quantum computing utilizing physics
  - Measurement based quantum computing
  - Errors in quantum computing
- Quantum computing designed to study physics

Timeline

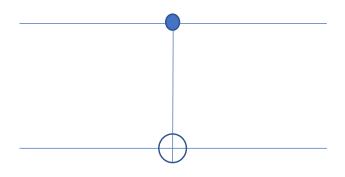

What is it (MBQC)?

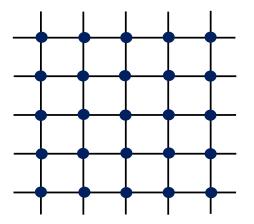


#### **Recall Entanglement**


- Failure to be written as a product state (e.g.  $|\phi\rangle|\varphi\rangle$ )
  - e.g. an entangled state  $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$

### Corresponding circuit diagram:



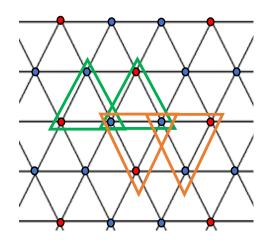


What is it (MBQC)?

Example: 2-qubit gate (CNOT)



#### Corresponding circuit diagram

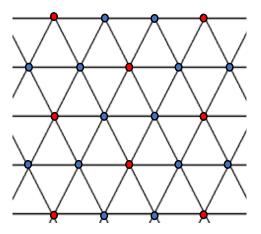





The first and most studied resource state: cluster state

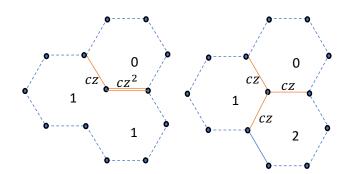
$$|\psi_c\rangle = \left(\prod_{\langle i,j\rangle} CZ_{ij}\right) \left(\bigotimes_k |+\rangle_k\right)$$

Each qubit is in the  $|+\rangle$  state; every pair of neighbors are entangled by CZ gate

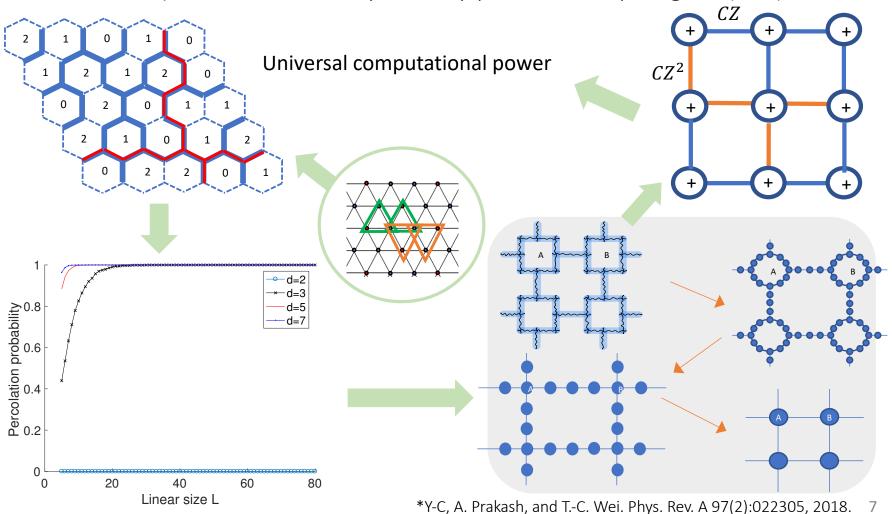

Past work\*: qudit MBQC with symmetry protected topological (SPT) states



A class of symmetry protected topological states:

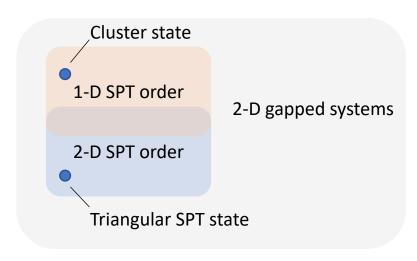

$$|\phi_k\rangle = \left(\prod_{\Delta(a,b,c)} CCZ_{abc}^k\right) \left(\prod_{\nabla(d,e,f)} CCZ_{def}^{\dagger k}\right) \left(\bigotimes_i |+\rangle_i\right)$$

Each qubit is in the  $|+\rangle$  state; every triangle of qubits are entangled by  $CCZ^k/CCZ^{\dagger k}$  gate




Idea: convert the state to the cluster state.

Here: measure the red qubits in the computational basis. Examples of three neighboring measurement outcomes:



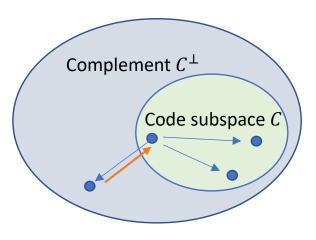

Past work\*: qudit MBQC with symmetry protected topological (SPT) states



#### Future work:

- Computational power of symmetry protected topological (SPT) phases
  - Modifications to the computation scheme?
  - Types of symmetry other than internal symmetry?




#### Initial Idea:

Else, et al. Phys. Rev. Lett., 108:240505, 2012. Stephen, Wang, Prakash, Wei, and Raussendorf. Phys. Rev. Lett., 119:010504, 2017.

#### Progress in literature:

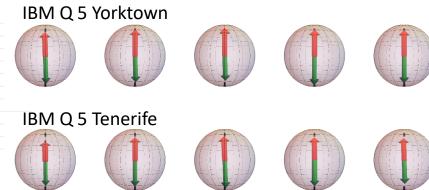
Wei and Huang. Phys. Rev. A, 96:032317, 2017. Raussendorf, et al. Phys. Rev. Lett., 122:090501, 2019. Stephen, et al. Quantum 3:142, 2019.

- Density matrix ρ
  - Pure state  $\rho = |\psi\rangle\langle\psi|$
  - Mixed state
- Types of error
  - Relaxation, decoherence, depolarizing, ...
- Characterizing realistic quantum computing
  - State/process/detector tomography, randomized benchmarking, ...
- Error mitigation
  - Dynamical decoupling, zero error extrapolation, ...
- Error correction
  - Threshold theorem



Past work\*: quantum detector tomography in IBM quantum computers



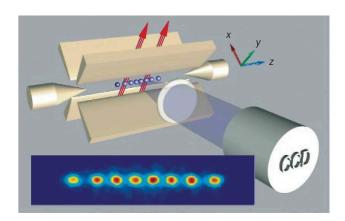

Histogram showing measurement of the first qubit prepared in state  $|0\rangle$ .

A 1-qubit detector:

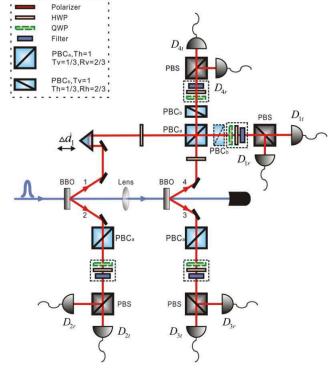
$$\begin{split} \pi^{(0)} &= a^{(0)} \big( 1 + \vec{r}^{(0)} \cdot \vec{\sigma} \big) \\ \pi^{(1)} &= a^{(1)} \big( 1 + \vec{r}^{(1)} \cdot \vec{\sigma} \big) \end{split}$$

An N-qubit detector:

$$\pi^{(\vec{n})} = \sum_{\vec{i}} c_{\vec{i}}^{(\vec{n})} \sigma_{i_1} \otimes \cdots \otimes \sigma_{i_N}$$




The arrow on the Bloch sphere indicates the vector  $ec{r}^{(0)}$  or  $ec{r}^{(1)}$ , while the width of the arrow represents magnitude  $a^{(0)}$  or  $a^{(1)}$ .


Sign of crosstalk between qubits!

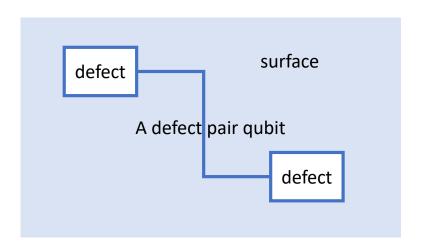
#### Future work:

- Errors in MBQC
  - Photonic system
  - Trapped ion system

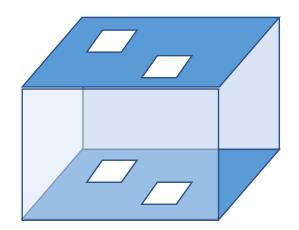


Trapped ion system. Picture from R. Blatt and D. Wineland, Nature 453, 1008–1015, 2008.




Gao, et al. Nat. Photonics, 5:117-123, 2011.

Lanyon, et al. Phys. Rev. Lett., 111(21):210501, 2013.

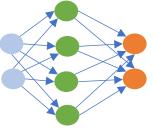

Experimental setup to generate a 4-qubit entangled state. Picture from Gao, et al.

### Future work:

- Measurement based topological codes
  - Topological MBQC (best threshold currently)
  - Method based on 3-D color codes

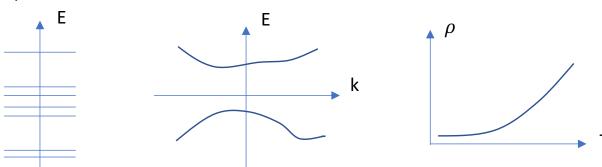


Fujii. arXiv:1504.01444, 2015. Bombin. arXiv:1810.09571, 2018.




## Design algorithms to study physics

Questions quantum computing may address:


Factoring, solving linear equations, machine learning, ...

$$15 = 3 \times 5$$



• Questions in physics:

Ground state and its energy, the entire spectrum, thermal distribution, dispersion, interactions, evolution of systems, transport properties, ...



## Design algorithms to study physics

Features of physical systems

### Symmetry

B. T. Gard, et al. arXiv:1904.10910, 2019.

#### Locality

M. Motta, et al. arxiv:1901.07653, 2019.

What is computing

"Do not have to imitate nature"

D. Poulin, et al. Phys. Rev. Lett., 121:010501, 2018.

Single-qubit measurement

Y-C and T.-C. Wei. arXiv:1903.11999, 2019.

## Design algorithms to study physics

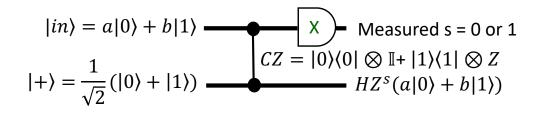
#### Future work:

- Eigenstate preparation and spectral measurement
  - What kind of physical systems?
  - Main challenges?
  - Existing methods and limitations?
  - How to approach?

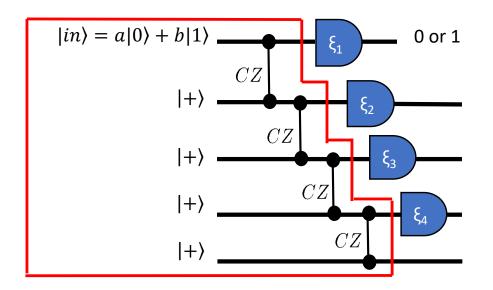


from material scientists, mathematicians and computer scientists

### Timeline in the following 1-2 years 💢



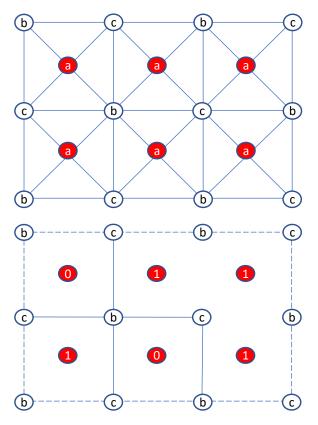

| Topic                                                        | Stage                                                                                                | Estimated time |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------|
| Computational power of symmetry protected topological phases | Review: the modified MBQC scheme, 1-D case, 2-D subsystem symmetry                                   | 1-2 months     |
|                                                              | Explore computational power of SPT phases protected by internal symmetry and/or crystalline symmetry | 3-4 months     |
| Errors in MBQC                                               | Review: typical errors in physical systems for MBQC                                                  | 1 month        |
|                                                              | Explore the effects of errors in MBQC; propose mitigation schemes                                    | 2-3 months     |
| Measurement based tpological codes                           | Review: measurement based topological codes                                                          | 2 months       |
|                                                              | Identify challenges and approachable problems; solve the problems                                    | 3-4 months     |
| Quantum algorithm                                            | Review: existing techniques                                                                          | 1-2 months     |
|                                                              | Improve algorithm for some specific problem                                                          | 3-4 month      |
|                                                              |                                                                                                      | 10             |


# THANKS

## Appendix: MBQC by teleportation

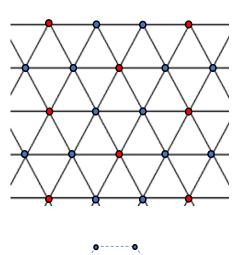
What is it (MBQC)?

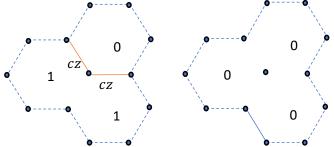



Information of the input state is teleported to another qubit; such information can be recovered given the measurement outcome.



With chosen measurement bases, the qubit at the end will be in the state  $U|in\rangle$  for a desired unitary operation U, up to byproduct operators determined by measurement outcomes.


## Appendix: MBQC using SPT states


#### Qubit SPT state on union-jack lattice



J. Miller, and A. Miyake, Nature Partner Journals Quantum Information, 2:16036, 2016.

### Qubit SPT state on triangular lattice





### Appendix: Some quantum algorithms in physics

- Spectral measurement using function of Hamiltonian
  - D. Poulin, et al, Phys. Rev. Lett., 121(1):010501, 2018.
- Quantum-classical hybrid
  - Quantum imaginary time evolution
    - M. Motta, et al, arxiv:1901.07653, 2019.
- Variational search for eigenstates combined with iterative phase estimation ("witness assisted")
  - R. Santagati, et al, Sci. Adv. 4, eaap9646, 2018.
- Spectral measurement utilizing single-qubit measurement
   Y-C and T.-C. Wei. arXiv:1903.11999, 2019.