

Combining DFT and Machine Learning Towards faster and more accurate ab-initio calculations

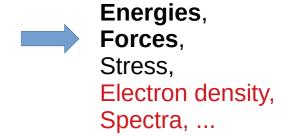
Sebastian Dick, Department of Physics and Astronomy, Stony Brook University Fernandez-Serra Group Jr. Researcher Award, 07/25/2019

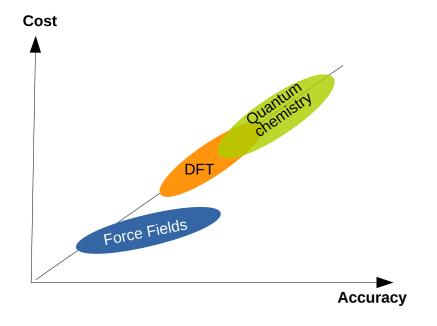
Recap, what has changed?

Simulations in Molecular Sciences



- Force Fields
- Density Functional Theory (DFT)
 - Quantum Chemistry





We use DFT because:

- Can scale to large systems sizes (100s to 1000s of atoms) + Periodic boundary conditions
 - → Condensed systems
- Non-empirical, hence unbiased
- Fully reactive

How does DFT work?

$$H\psi=E\psi$$
 Quantum Mechanics

$$\min_n E[n(ec{r})] \ E_{xc}[n]$$

$$E[n] = T[n] + \mathbf{E}_{xc}[n] + \int d\vec{r} V_{ext}(\vec{r}) n(\vec{r}) + E_{Hartree}[n] + E_{II}$$

Instead of solving Schrodinger equation, solve auxiliary system of non-interacting electrons (represented through electron density $\,n$).

Procedure: Calculate $\min_n E[n(\vec{r})]$ self-consistently \rightarrow obtain energy, forces and other prop. for minimizing density

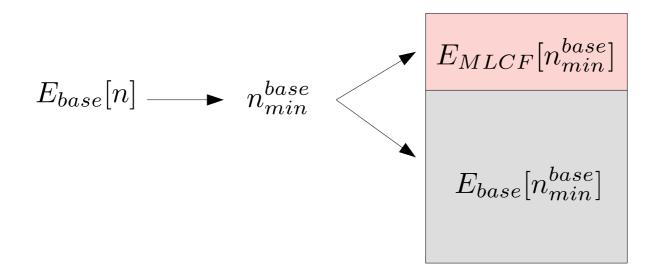
Problem: $E_{xc}[n]$ not exactly known, needs to be approximated

Our (original) method

Procedure: Calculate $\min_n E[n(\vec{r})]$ self-consistently \rightarrow obtain energy, forces and other prop. for minimizing density

Problem: $E_{xc}[n]$ not exactly known, needs to be approximated

Idea: Do the above with a reasonably cheap baseline approximation $E_{base}[n]$, correct the energy with a machine-learned functional of the density $E_{MLCF}[n]$



Modifications

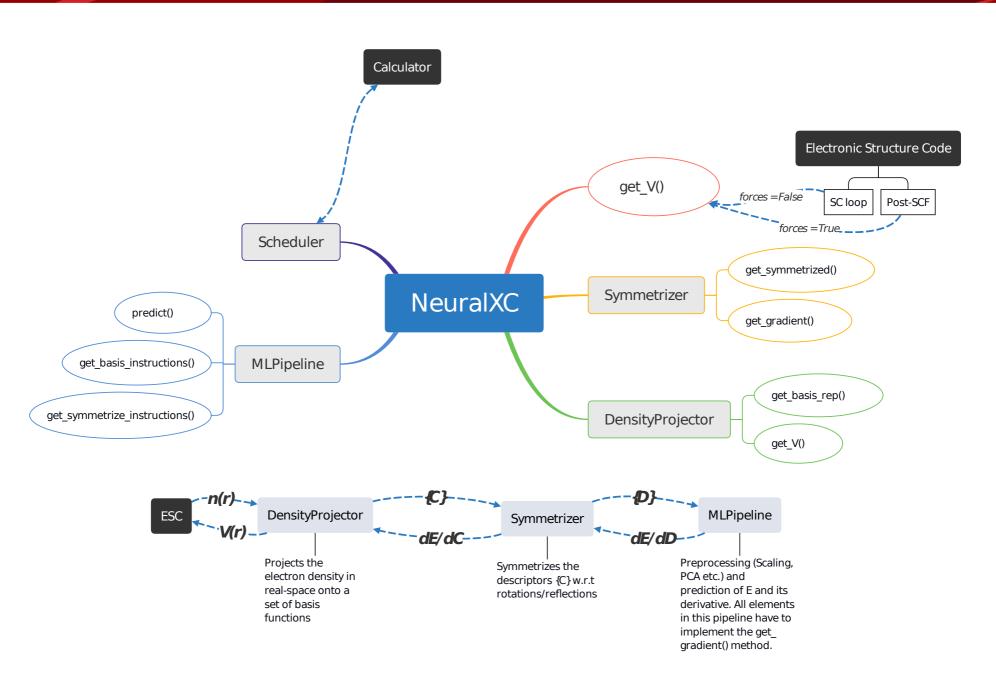
Instead of adding a correcting layer, integrate the machine-learned functional into the minimization process.

$$\tilde{E}[n] = E_{base}[n] + E_{MLCF}[n]$$

$$\tilde{E}[n]$$
 \longrightarrow \tilde{n}_{min} \longrightarrow $\tilde{E}[\tilde{n}_{min}]$

- + Can correct density as well
- + Energy-conserving forces can be obtained directly
- Non-trivial implementation

Implementation



github.com/semodi/neuralxc

Results

Results - Water

Dataset:

Training: 640 Monomers, 1600 Dimers, 1200 Trimers

Testing: 160 Monomers, 400 Dimers, 300 Trimers, 50 Tetramers, 50 Pentamers, ...

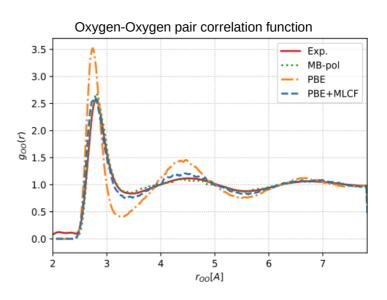
Baseline: vdW-cx (GGA)

Reference: MB-pol

Test set accuracies (all energies in meV/Molecule)

No. Molecules	RMSE	MAE	max. Error
1	2.29 (53.19)	1.25 (43.13)	14.71 (151.19)
2	4.33 (40.17)	2.91 (31.28)	31.03 (136.91)
3	2.89 (28.25)	2.16 (22.29)	12.27 (75.20)
4	2.79 (9.69)	2.15 (7.93)	7.70(24.95)
5	2.64 (11.24)	2.19 (8.97)	6.23 (36.69)
8	3.43 (9.26)	2.72(7.34)	8.05 (22.67)
16	2.75 (6.28)	2.15 (5.03)	6.19 (17.15)

Hexamers 20 Baseline (vdW-cx) Baseline + MLCF Reference (MB-pol) 5 prism cage book ring



Exp: L. B. Skinner et al. J. Chem. Phys. 138, 074506 (2013)

Results - Benzene

Dataset obtained from [1]:

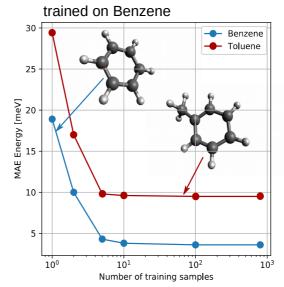
Training: 1000 snapshots from MD

Testing: 500 snapshots

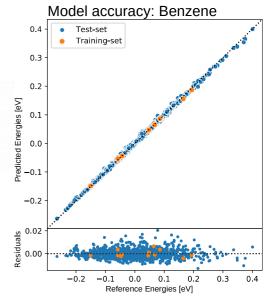
Baseline: PBE

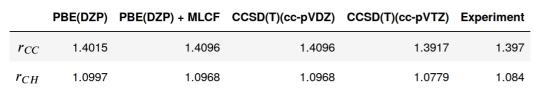
Reference: CCSD(T) (cc-pVDZ)

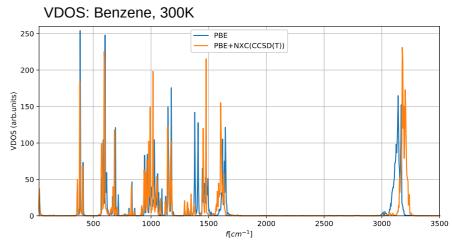
- Data-efficiency: model reaches full accuracy at only 8-10 training points.
- Transferability: model trained on benzene still remains (somewhat) valid for toluene
- Accurate forces: self-consistent, conservative forces with MAE of less than 1kcal/mol make molecular dynamics at CCSD(T) level possible



Test set MAE of a model







SD, Fernandez-Serra (in preparation)

[1] Chmiela, S., Sauceda, H. E., Müller, K.-R., Tkatchenko, A., Nature Communications, 9(1), 2018, 3887

Results – small molecules

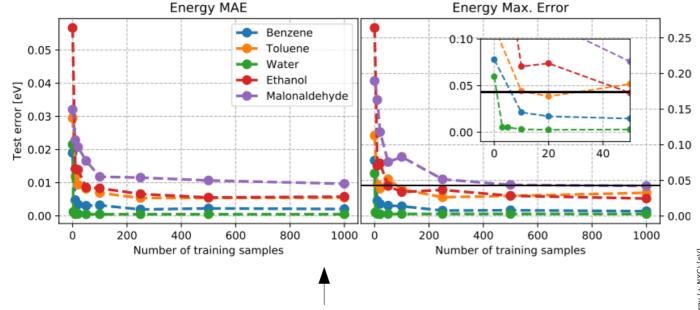
Dataset obtained from [1]:

Training: 1000 snapshots from MD

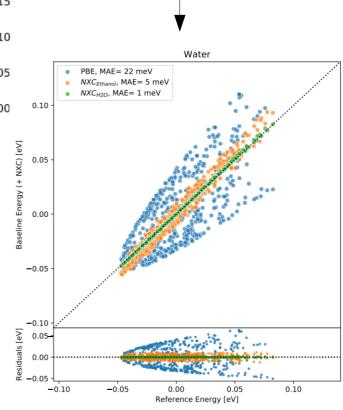
Testing: 500 snapshots

Baseline: PBE

Reference: CCSD(T) (cc-pVDZ)



50 training samples sufficient to reach max. errors below 1kcal/mol ("chemical accuracy") for all molecules except Malonaldehyde (requires 250 – 500 samples)



Model trained on

water

ethanol works well for

SD, Fernandez-Serra (in preparation)

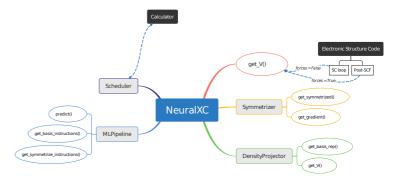
[1] Chmiela, S., Sauceda, H. E., Müller, K.-R., Tkatchenko, A., Nature Communications, 9(1), 2018, 3887

Fellowship/Collaborations

MolSSI Seed Fellowship

The 2019 Seed Fellows

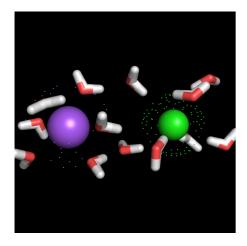
My mentor, Samuel Ellis

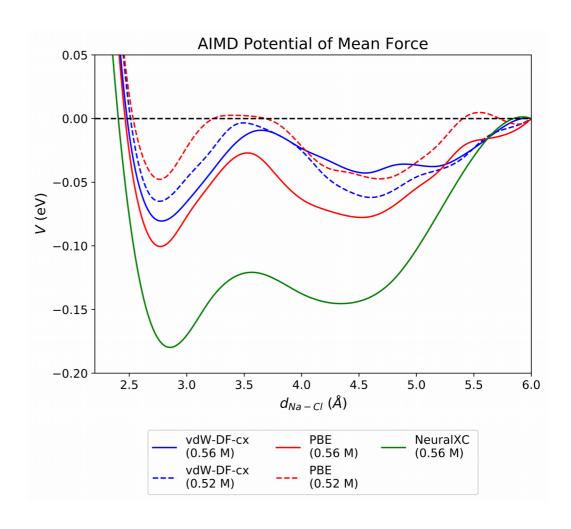


- Financial support and mentoring over a 6 month period (January to July 2019)
- Bootcamp in January introducing fellows to agile and sustainable software development
- Weekly Skype meetings with my mentor Sam Ellis to set short-term goals and report progress

Water + Ion calculations

Alec Wills





Collaborations

Alberto Torres

Luana Pedroza

"Investigating the behavior of water on gold surfaces"

Linfeng Zhang

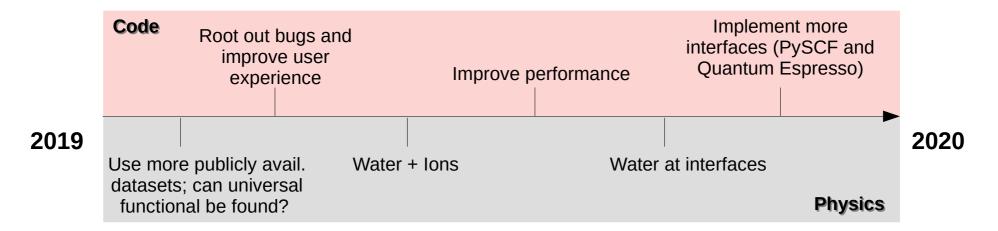
Roberto Car

Collaboration in planning

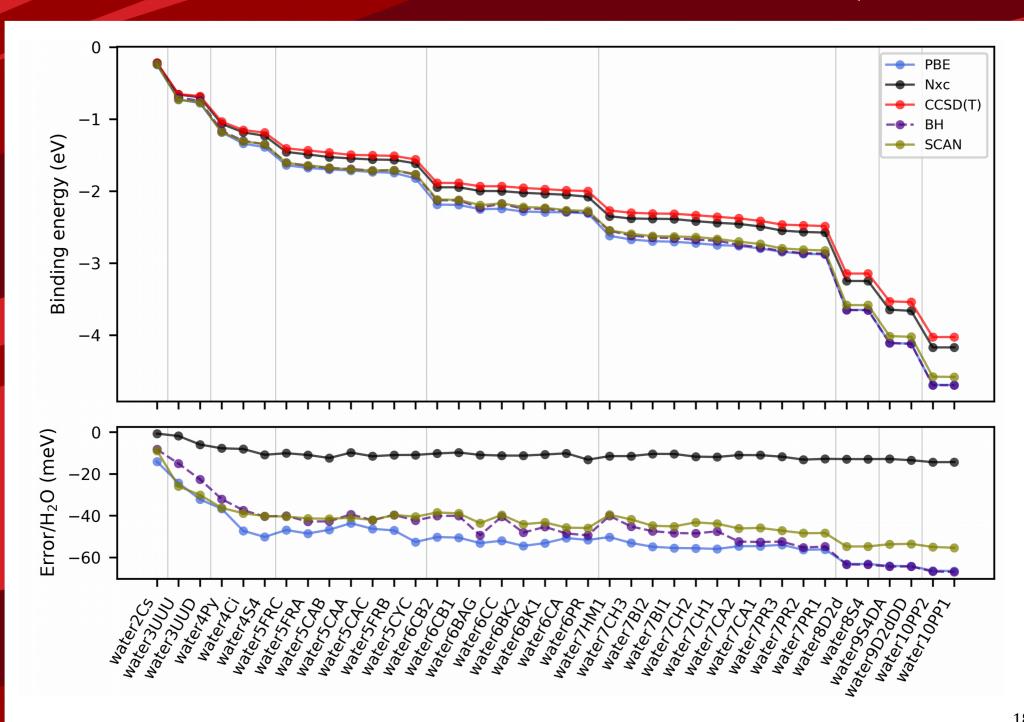
Conclusion and Outlook

- We successfully trained a ML-based density functional that lifts PBE to the accuracy of a higher level method
- The method is highly data efficient
- Once trained, it can be used at small additional computational cost
- It respects physical symmetries and conserves energy
- First results on transferability seem to indicate that method learns underlying physics

What remains to be done



Thank you!



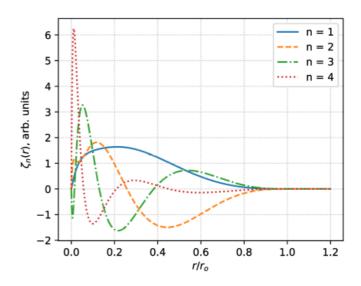
Representation

• **Input:** Expansion of electron density around each atom into orthonormal basis functions:

$$\psi_{nlm}(\vec{r}) = Y_l^m(\theta, \phi)\zeta_n(r)$$

Electronic descriptors:

$$c_{nlm}^{\alpha,I} = \int_{\vec{r}} \rho(\vec{r} - \vec{r}_{\alpha,I}) \psi_{nlm}^{*\alpha}(\vec{r})$$
 Atomic species Atom index



Targets: Difference between reference and baseline energies

$$E_{MLCF}(\mathbf{c}[\rho]) = E^{ref}[\rho] - E^{base}[\rho]$$

Potential:

$$V_{MLCF}[\rho(\vec{r})] = \frac{\delta E_{MLCF}}{\delta \rho(\vec{r})} = \sum_{\beta} \frac{\partial E_{MLCF}(\mathbf{c}[\rho])}{\partial c_{\beta}} \psi_{\beta}^{*}(\vec{r})$$

$$\tilde{V}_{xc}[\rho(\vec{r})] = V_{xc}^{base}[\rho(\vec{r})] + V_{MLCF}[\rho(\vec{r})]$$

