# Learning with Partially Ordered Representations

Jonathan Rawski Department of Linguistics

July 24, 2019

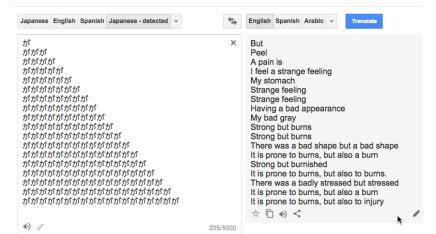
## Thank you for the support!

#### Output in 2018-2019

- Journal Articles: 1 published, 1 in review
- Paper-Reviewed proceedings: 2
- Abstract-reviewed proceedings: 2
- Invited Talks: 6
- ► Conference Talks: 11
- Conference Posters: 1

#### The Main Idea

Learning is eased when shared properties of the domain structure the space of hypotheses



# Poverty of the Stimulus and Data Sparsity

## Poverty of the Stimulus and Data Sparsity

#### BUT:

In the million-word Brown corpus of English: 45% of words, 80% of 2-grams 95% of 3-grams appear EXACTLY ONCE Bad for learning: Huge long-tailed distribution

How can a machine know that new sentences like "nine and a half turtles yodeled" is good? "turtles half nine a the yodeled" is bad?

## Poverty of the Stimulus and Data Sparsity

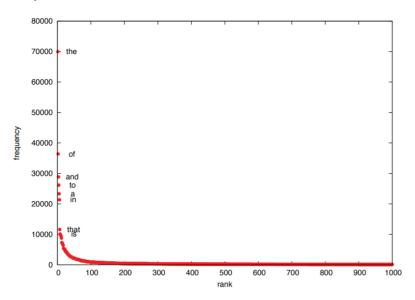
#### BUT:

In the million-word Brown corpus of English: 45% of words, 80% of 2-grams 95% of 3-grams appear EXACTLY ONCE

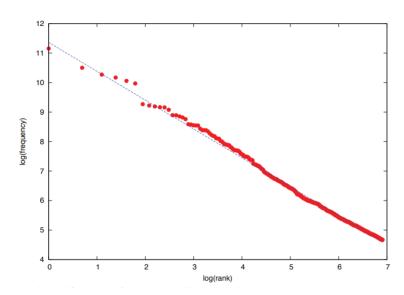
Bad for learning: Huge long-tailed distribution

How can a machine know that new sentences like "nine and a half turtles yodeled" is good? "turtles half nine a the yodeled" is bad?

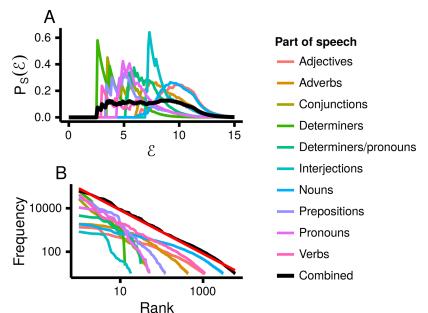
# The Zipf Problem



# The Zipf Problem



# Zipf Emerges from Latent Features



# NLP Example

```
In many NLP applications, text symbols are treated independently \mbox{Alphabet} = \{ \mbox{a}, \dots, \mbox{z}, \mbox{A}, \dots, \mbox{Z} \} = 52 \mbox{ symbols} \\ \mbox{Forbidding maybe all capitals} \rightarrow \mbox{Explosion!} \\ \mbox{If we use feature [capital], only 27! 26 letters + [capital]} \\ \label{eq:lemmany}
```

# Learning Algorithm (Chandlee et al 2018)

#### What have we done so far?

- Provably correct relational learning algorithm
- Prunes Hypothesis space according to ordering relation
- Provably identifies correct constraints for sequential data
- Uses data sparsity to its advantage!

#### Collaborative work with:



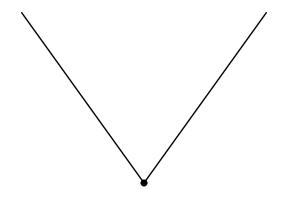
Jane Chandlee (Haverford)

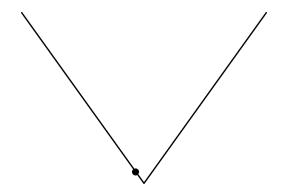


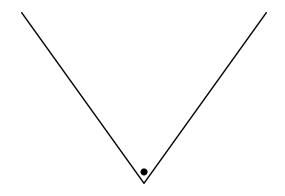
Jeff Heinz (SBU)

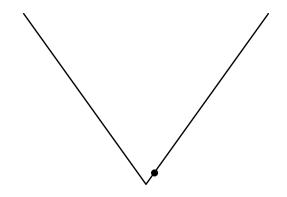


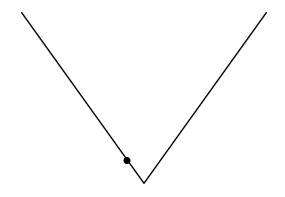
Adam Jardine (Rutgers)

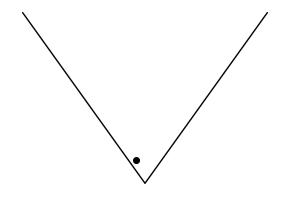


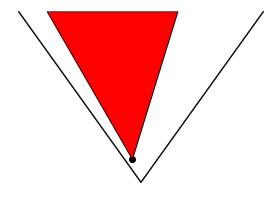


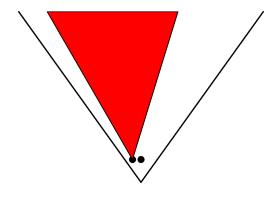


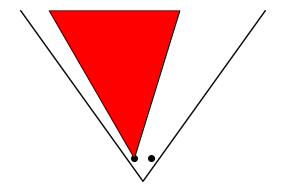




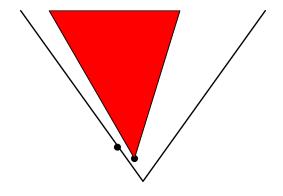


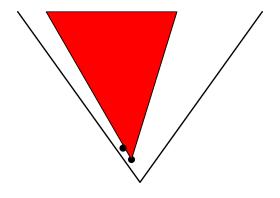


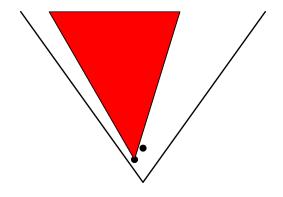




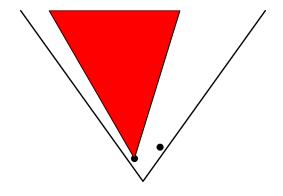


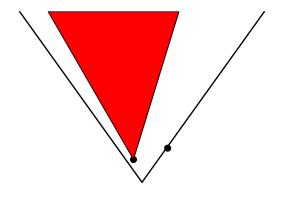


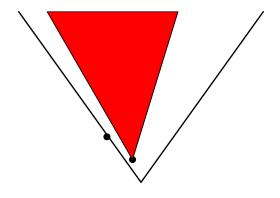


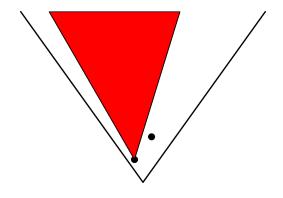


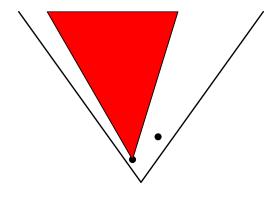


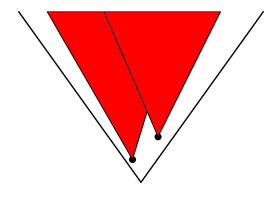


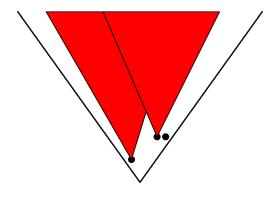


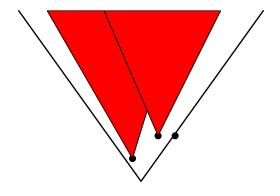






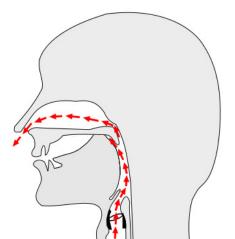






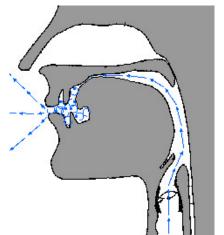
## Example: Features in Linguistics

 $\begin{aligned} & & sing \\ & & ring \\ & & bling \\ & ng = [+Nasal, +Voice, +Velar] \end{aligned}$ 



# Example: Features in Linguistics

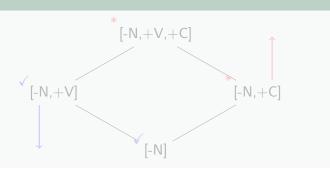
 $\begin{array}{c} \text{sand} \\ \text{sit} \\ \text{cats} \\ \text{s= [-Nasal,-Voice,- Velar]} \end{array}$ 



# Structuring the Hypothesis Space: Feature Matrix Ideals

#### Feature Inventory

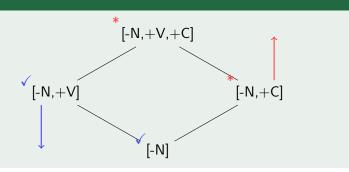
- $\blacktriangleright$   $\pm$ N = Nasal
- $\rightarrow$  +V = Voiced
- $ightharpoonup \pm C = Consonant$

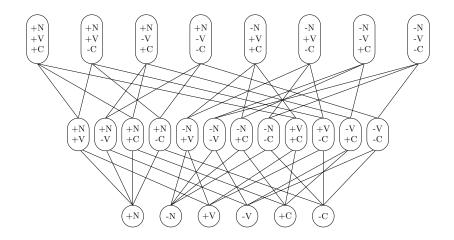


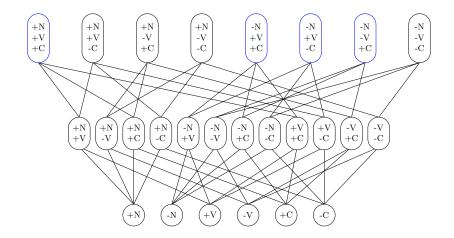
# Structuring the Hypothesis Space: Feature Matrix Ideals

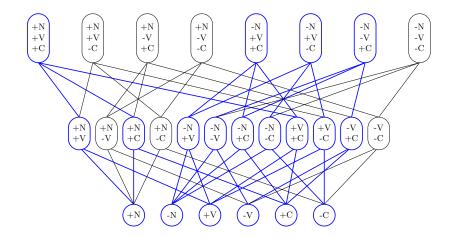
#### Feature Inventory

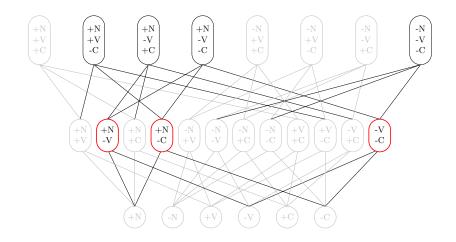
- $\blacktriangleright$   $\pm$ N = Nasal
- $\rightarrow$  +V = Voiced
- $ightharpoonup \pm C = Consonant$











# Two Ways to Explore the Space

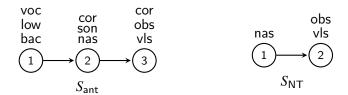
#### **Top-Down Induction**

- Start at the most specific points (highest) in the space
- Remove all the substructures that are present in the data.
- Collect the most general substructures remaining.

#### Bottom-Up Induction

- Beginning at the lowest element in the spave,
- ► Check whether this structure is present in the input data.
- If so, move up the space, either to a point with an adjacent underspecified segment, or a feature extension of a current segment, and repeat.

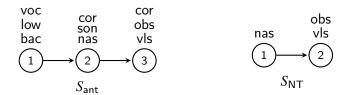
## Semilattice Explosion



**Table 2** Number of possible constraints for various values of |C| and n

|   |   | C          |             |             |             |  |
|---|---|------------|-------------|-------------|-------------|--|
|   |   | 30         | 100         | 200         | 400         |  |
|   | 1 | 30         | 100         | 200         | 400         |  |
|   | 2 | 900        | 10,000      | 40,000      | 160,000     |  |
| n | 3 | 27,000     | 1,000,000   | 8 million   | 64 million  |  |
|   | 4 | 810,000    | 100 million | 1.6 billion | 26 billion  |  |
|   | 5 | 24 million | 10 billion  | 320 billion | 10 trillion |  |

## Semilattice Explosion



**Table 2** Number of possible constraints for various values of |C| and n

|   |   | C          |             |             |             |  |
|---|---|------------|-------------|-------------|-------------|--|
|   |   | 30         | 100         | 200         | 400         |  |
|   | 1 | 30         | 100         | 200         | 400         |  |
|   | 2 | 900        | 10,000      | 40,000      | 160,000     |  |
| n | 3 | 27,000     | 1,000,000   | 8 million   | 64 million  |  |
|   | 4 | 810,000    | 100 million | 1.6 billion | 26 billion  |  |
|   | 5 | 24 million | 10 billion  | 320 billion | 10 trillion |  |

# Plan of the project

#### What has been done

Provably correct bottom-up learning algorithm

#### Goals of the Project

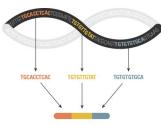
- ▶ Model Efficiency
- Model Implementation
- Model Testing large linguistic datasets
- Model Comparison: UCLA Maximum Entropy Learner

#### **Broader Impacts**

- Learner that takes advantage of data sparsity
- ► applicable on any sequential data (language, genetics, robotic planning, etc.)
- ▶ implemented, open-source code

#### **INSTRUCTIONS IN THE CODE**

#### Healthy



#### DNA

Along with genes (shown here in orange, yellow, and blue), which produce the components for proteins, the genome contains non-coding instructions (gray) that direct how these components are assembled.

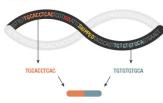
#### ASSEMBLY

The cell transcribes specific parts of the code according to the instructions.

#### PROTEIN

The parts are then assembled into a healthy protein.

#### **Diseased**



#### DNA

A mutation (red) in the non-coding instructions causes one gene segment to be ignored.

#### ASSEMBLY

This variation makes the cell skip over a protein-coding segment of the genome.

#### PROTEIN

The error in the instruction set leads to an altered protein, which may raise the risk for disease.