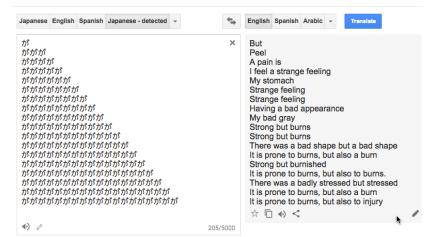
Learning with Partially Ordered Representations

Jonathan Rawski
Department of Linguistics
IACS Research Award Presentation

August 11, 2018

The Main Idea

Learning is eased when attributes of elements of sequences structure the space of hypotheses



Poverty of the Stimulus and Data Sparsity

```
Number of English words: \sim 10,000 Possible English 2-grams: N^2 Possible English 3-grams: N^3 Possible English 4-grams: N^4 ... easy learning if normal distribution
```

Poverty of the Stimulus and Data Sparsity

BUT:

In the million-word Brown corpus of English: 45% of words, 80% of 2-grams 95% of 3-grams appear EXACTLY ONCE Bad for learning: Huge long-tailed distribution

How can a machine know that new sentences like "nine and a half turtles yodeled" is good? "turtles half nine a the yodeled" is bad?

Poverty of the Stimulus and Data Sparsity

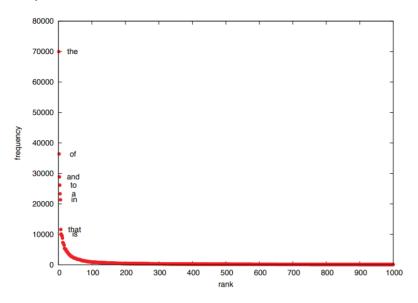
BUT:

In the million-word Brown corpus of English: 45% of words, 80% of 2-grams 95% of 3-grams appear EXACTLY ONCE

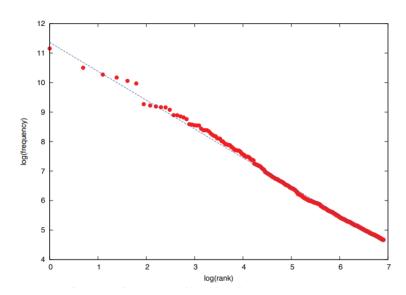
Bad for learning: Huge long-tailed distribution

How can a machine know that new sentences like "nine and a half turtles yodeled" is good? "turtles half nine a the yodeled" is bad?

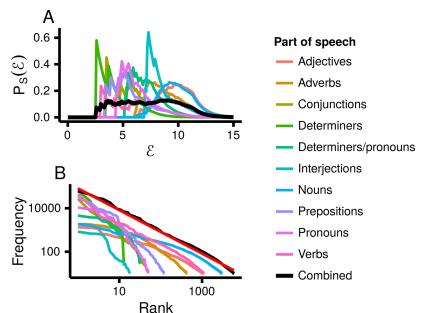
The Zipf Problem



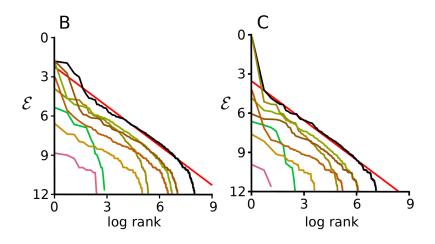
The Zipf Problem



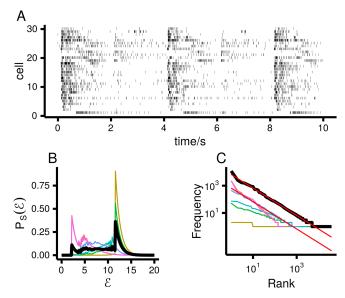
Zipf Emerges from Latent Features



Zipf Emerges from Latent Features



Zipf Emerges from Latent Features



SET OR NO SET

Some examples below:

Number	all different	all different	all different	all the same all different	
	all different	all different	all different	all the same	
Shading				all the same	
Shape	all different	all different	all different	all the same	
Color	*	*	all different	all the same	
Are the attributes all the same or all different?	00	000	00	0 0 0	

THE FULL DECK

\Diamond	$\Diamond \Diamond$	$\Diamond \Diamond \Diamond$	0	00	000	8	88	000
	♦ ♦							
•	♦	♦ ♦ ♦				1	11	333
\Diamond	$\Diamond \Diamond$	$\Diamond \Diamond \Diamond$	0	00	000	()	88	888
	$\Diamond \Diamond$							
•	♦	* * *				1	11	333
\Diamond	$\Diamond \Diamond$	$\Diamond \Diamond \Diamond$	0	00	000	()	88	888
	♦ ♦							
♦	♦	♦ ♦ ♦				1	11	333

Learning Algorithm (Chandlee et al 2018)

What have we done so far?

- Provably correct relational learning algorithm
- Prunes Hypothesis space according to ordering relation
- Provably identifies correct constraints for sequential data
- Uses data sparsity to its advantage!

Collaborative work with:

Jane Chandlee (Haverford)

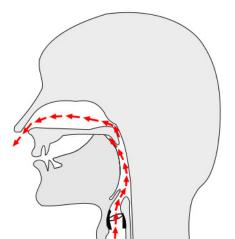
Jeff Heinz (SBU)

Adam Jardine (Rutgers)

Bottom-Up Learning Algorithm

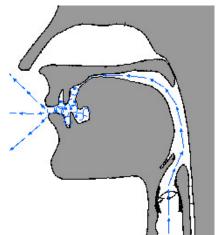
Example: Features in Linguistics

 $\begin{aligned} & & sing \\ & & ring \\ & & bling \\ & ng = [+Nasal, +Voice, +Velar] \end{aligned}$



Example: Features in Linguistics

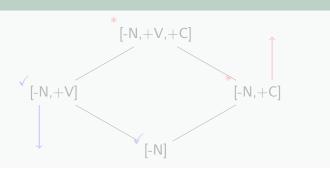
 $\begin{array}{c} \text{sand} \\ \text{sit} \\ \text{cats} \\ \text{s= [-Nasal,-Voice,- Velar]} \end{array}$



Structuring the Hypothesis Space: Feature Matrix Ideals

Feature Inventory

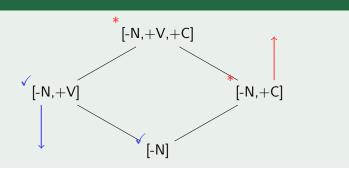
- \blacktriangleright \pm N = Nasal
- \rightarrow +V = Voiced
- $ightharpoonup \pm C = Consonant$

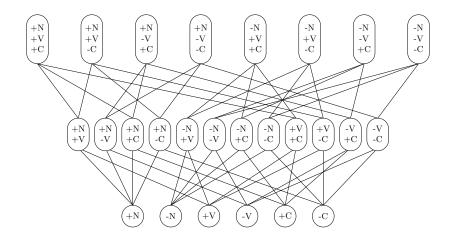


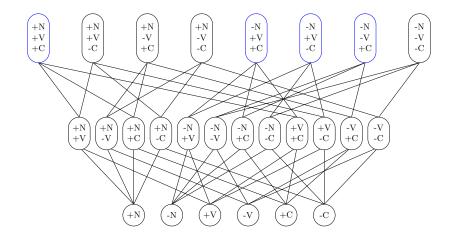
Structuring the Hypothesis Space: Feature Matrix Ideals

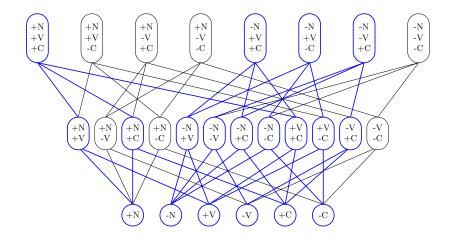
Feature Inventory

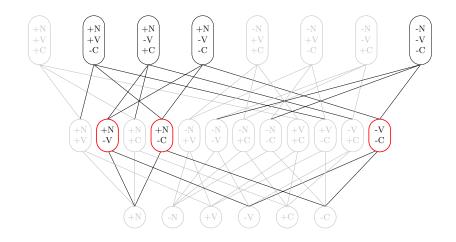
- \blacktriangleright \pm N = Nasal
- \rightarrow +V = Voiced
- $ightharpoonup \pm C = Consonant$











Two Ways to Explore the Space

Top-Down Induction

- ▶ Start at the most specific points (highest) in the semilattice
- Remove all the substructures from the lattice that are present in the data.
- Collect the most general substructures remaining.

Bottom-Up Induction

- Beginning at the lowest element in the semilattice,
- ► Check whether this structure is present in the input data.
- If so, move up the lattice, either to a point with an adjacent underspecified segment, or a feature extension of a current segment, and repeat.

Semilattice Explosion



Table 2 Number of possible constraints for various values of |C| and n

		C			
		30	100	200	400
	1	30	100	200	400
	2	900	10,000	40,000	160,000
n	3	27,000	1,000,000	8 million	64 million
	4	810,000	100 million	1.6 billion	26 billion
	5	24 million	10 billion	320 billion	10 trillion

Semilattice Explosion

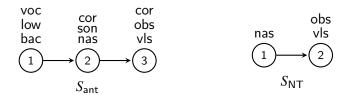


Table 2 Number of possible constraints for various values of |C| and n

		C			
		30	100	200	400
	1	30	100	200	400
	2	900	10,000	40,000	160,000
n	3	27,000	1,000,000	8 million	64 million
	4	810,000	100 million	1.6 billion	26 billion
	5	24 million	10 billion	320 billion	10 trillion

Plan of the project

What has been done

Provably correct bottom-up learning algorithm

Goals of the Project

- ► Model Efficiency
- Model Implementation
- Model Testing large linguistic datasets
- Model Comparison: UCLA Maximum Entropy Learner

Broader Impacts

- Learner that takes advantage of data sparsity
- ► applicable on any sequential data (language, genetics, robotic planning, etc.)
- ▶ implemented, open-source code

Project Timeline 2018-2019

Month	Plan
September	Algorithmic Efficiency
October	Implement string-to-model functions in Haskell
November	Implement top-down learner in Python3
December	Implement bottom-up learner in Python3
January	
Febuary	test learning algorithm - Brazilian Quechua corpus
March	
April	Model Comparison with
May	Maximum Entropy Learner & Deep Networks

	Extend from learning patterns to transformations		
future work	test on other linguistic sequence data (syntax)		
	extend to other non-linguistic sequences		
	extend to robotic planning		

The Main Idea

Learning is eased when attributes of elements of sequences structure the space of hypotheses

Lila Gleitman (1990)

"the trouble is that an observer who notices *everything* can learn *nothing*, for there is no end of categories known and constructable to describe a situation"