Monitoring Pack-ice Seal Populations from Space with Deep Learning

Bento Gonçalves

Outline

Introduction

- Antarctic Ecology 101
- Intro to computer vision
- Seal detection pipeline

Present work

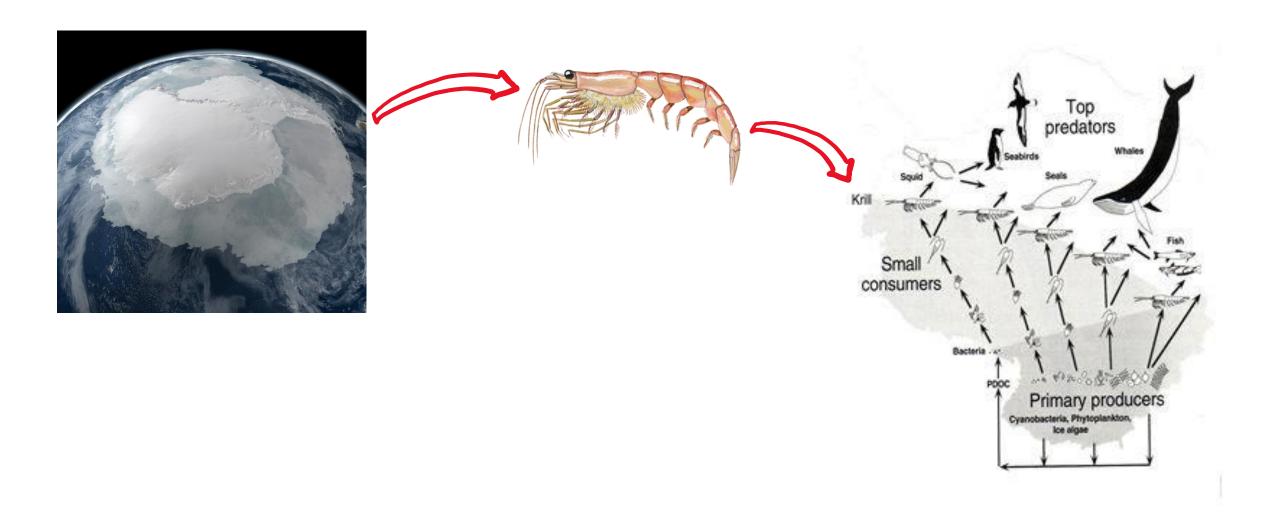
- Training set
- Haul out detection CNNs
- Counting CNNs

Summary and next steps

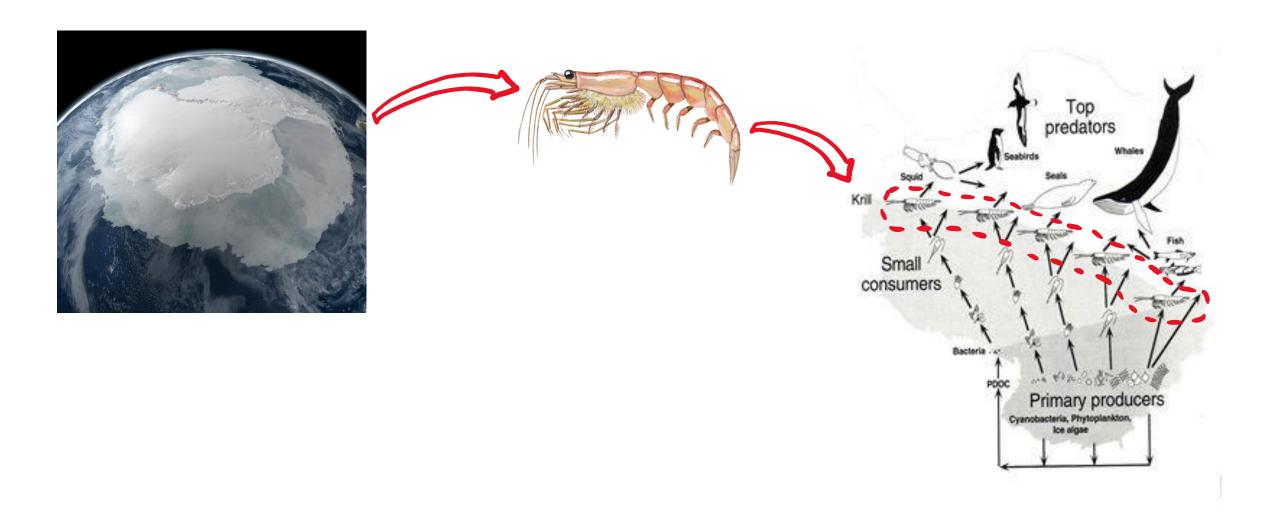
Big Picture: How many pack-ice seals are in Antarctica?

Introduction

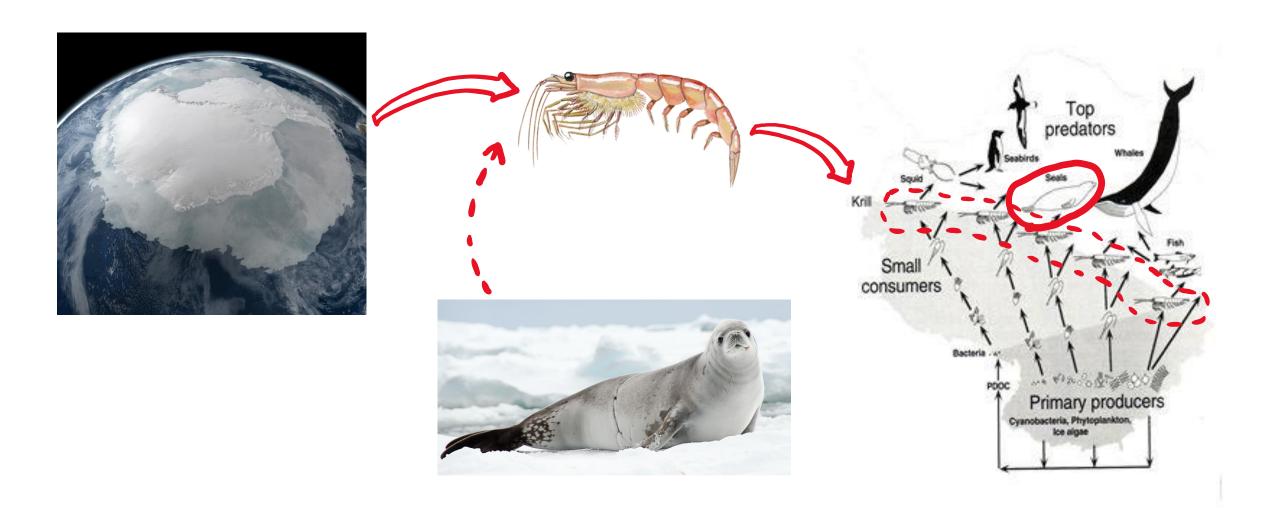
Antarctic Ecology 101



Antarctic Ecology 101

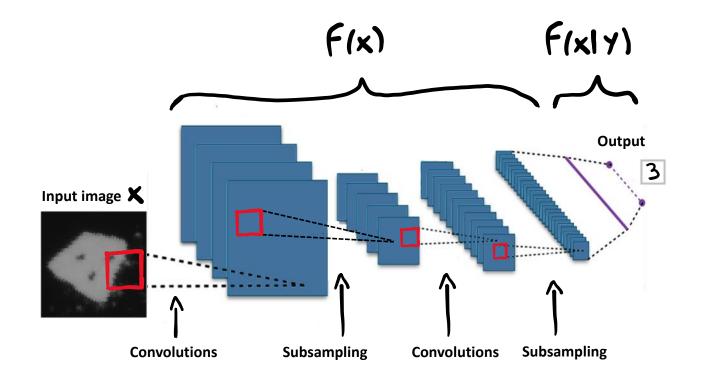


Antarctic Ecology 101



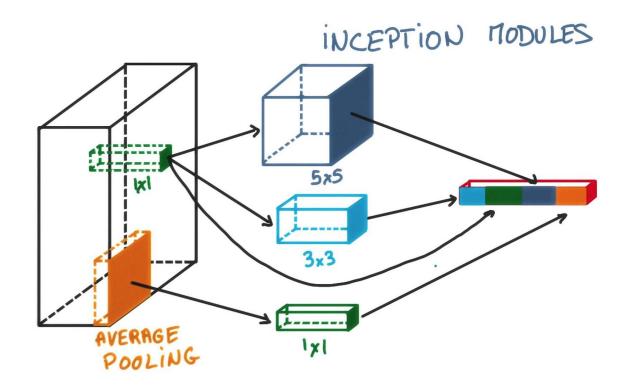
Intro to computer vision

- Artificial neural networks –
 Deep learning
- Convolutional neural networks (CNN)
 - Data hungry
 - Computationally expensive



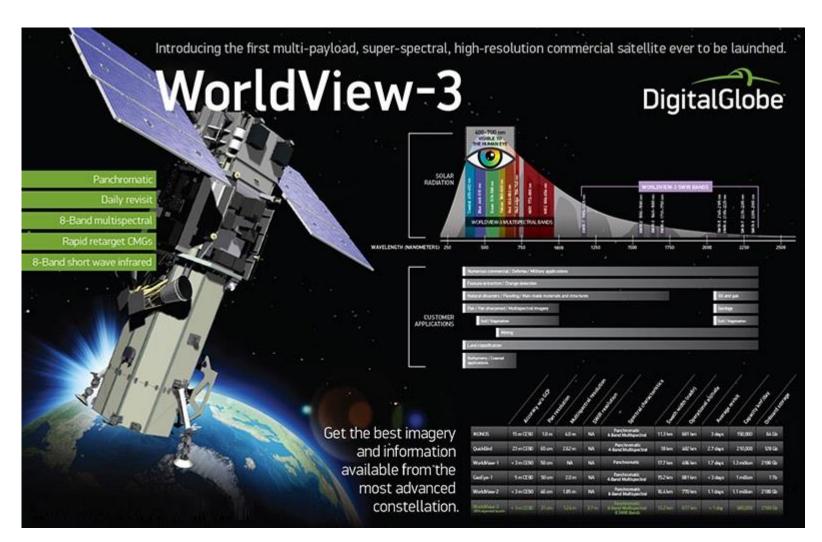
Intro to computer vision

- Artificial neural networks –
 Deep learning
- Convolutional neural networks (CNN)
 - Data hungry
 - Computationally expensive
- CNN Architectures:
 - VGG16
 - Resnet
 - Inception



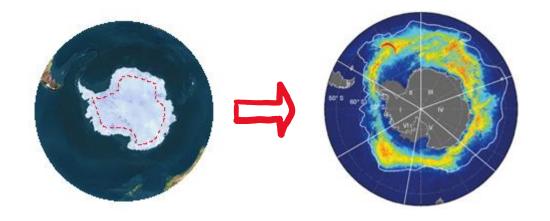
High-resolution satellite imagery

- WorldView-3
- 31cm resolution at nadir
- Coverage is not as good as low-res sensors (e.g. MODIS)
- Scene (~ 300 km²) vs.
 Patch (1 ha)



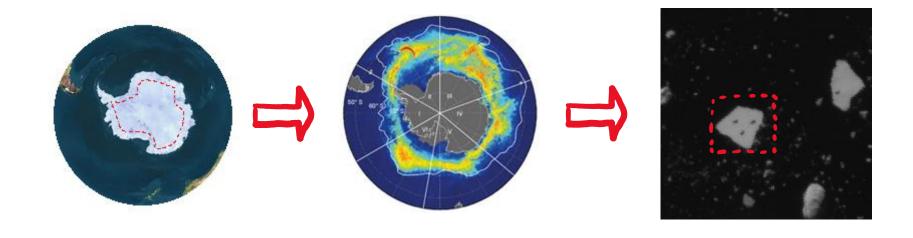


STEP 1: Buffer out scenes that are too far from the coastline or with too much cloud cover, split remaining scenes into patches



STEP 1: Buffer out scenes that are too far from the coastline or with too much cloud cover, split remaining scenes into patches

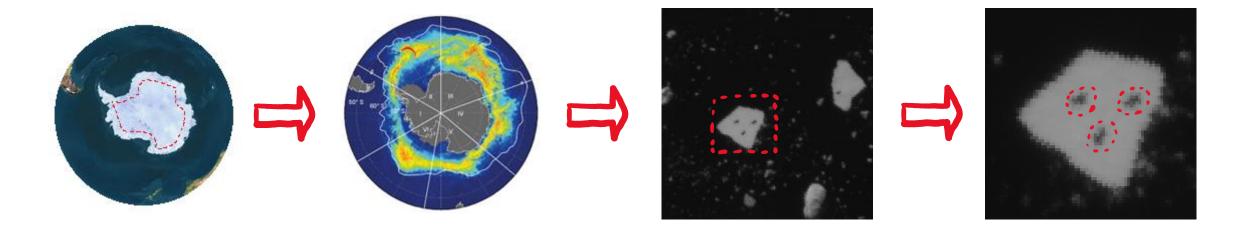
STEP 2: Extract environmental data at input locations



STEP 1: Buffer out scenes that are too far from the coastline or with too much cloud cover, split remaining scenes into patches

STEP 2: Extract environmental data at input locations

STEP 3: Sweep through patches with a classification CNN trained on groups of seals



STEP 1: Buffer out scenes that are too far from the coastline or with too much cloud cover, split remaining scenes into patches

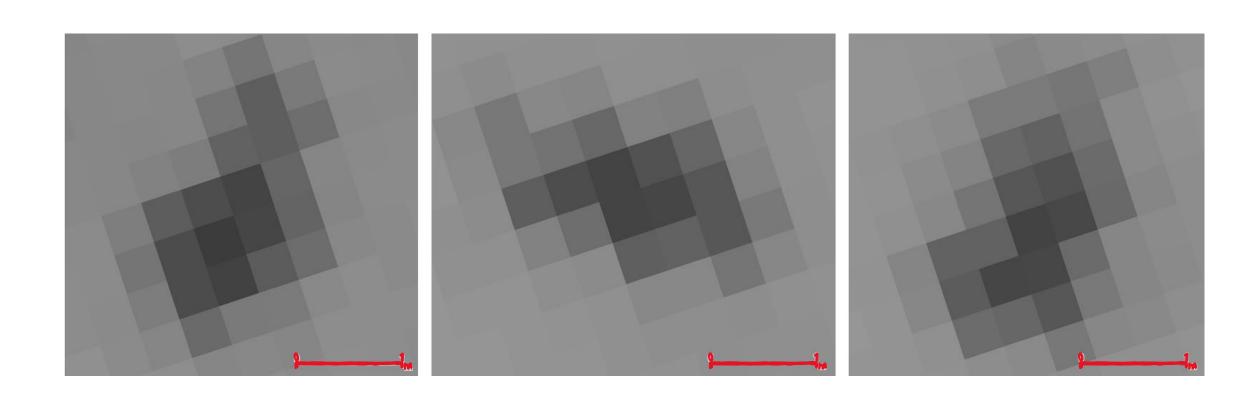
STEP 2: Extract environmental data at input locations

STEP 3: Sweep through patches with a classification CNN trained on groups of seals

STEP 4: Locate and count individual seals inside flagged patches with a detection CNN

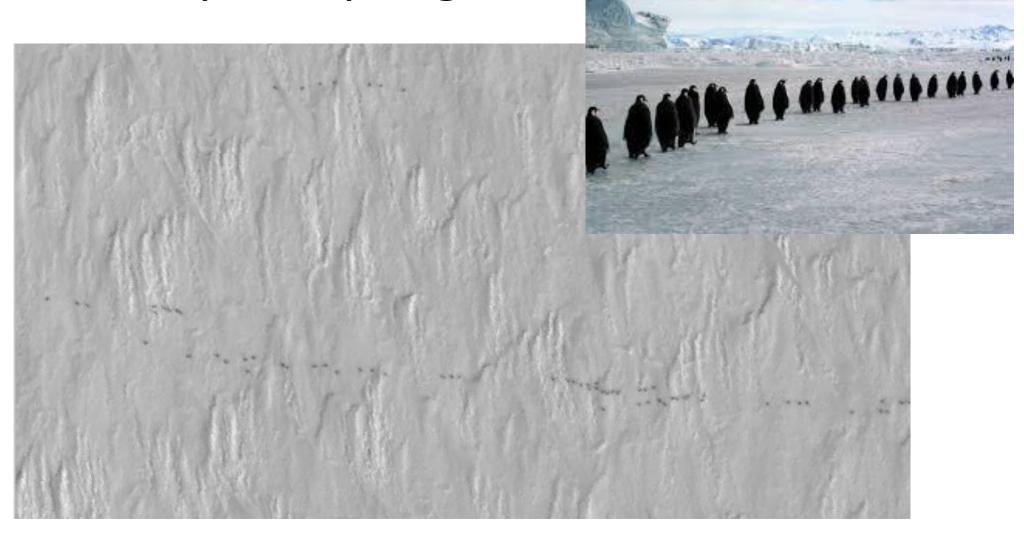
Groups of seals – crabeaters

Single seals



BONUS: emperor penguins

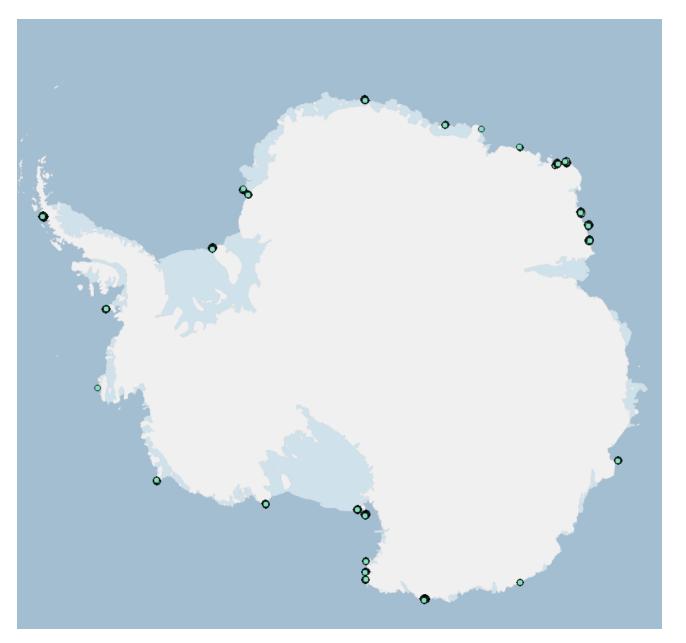
BONUS: emperor penguins

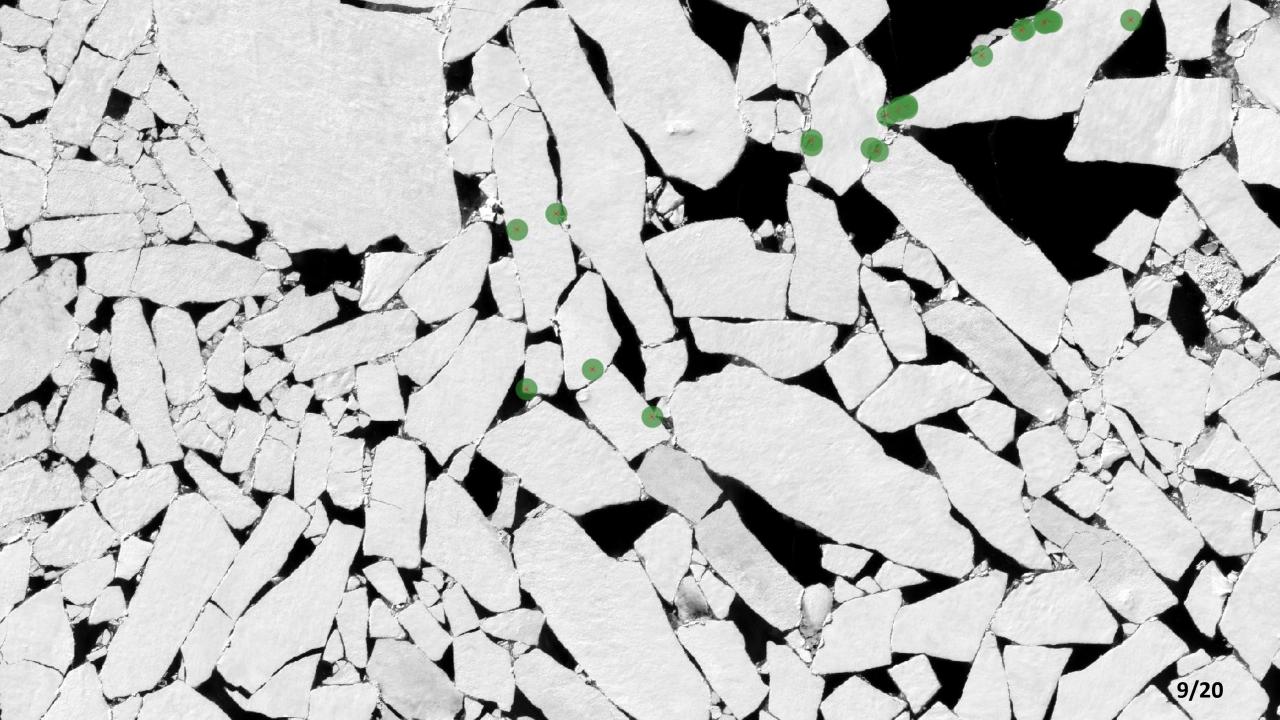


Present work

Training set creation

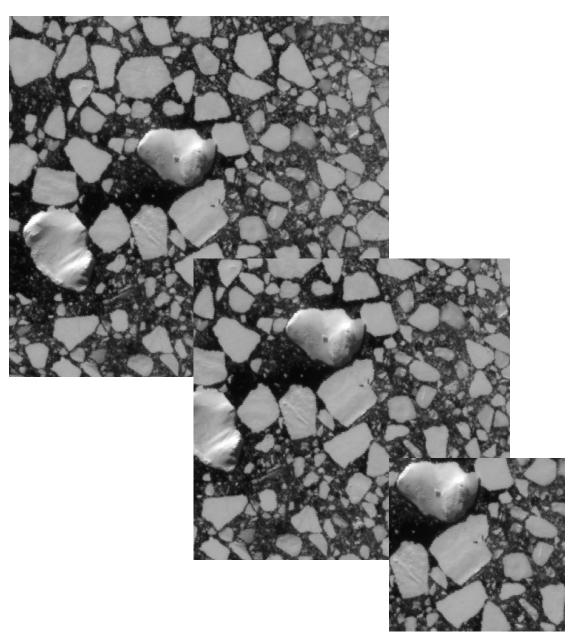
- Patch extraction
 - ~78000 labeled patches across >30 scenes
 - 11 training classes
- Context information:
 - Broad spatial context
 - Environmental covariates





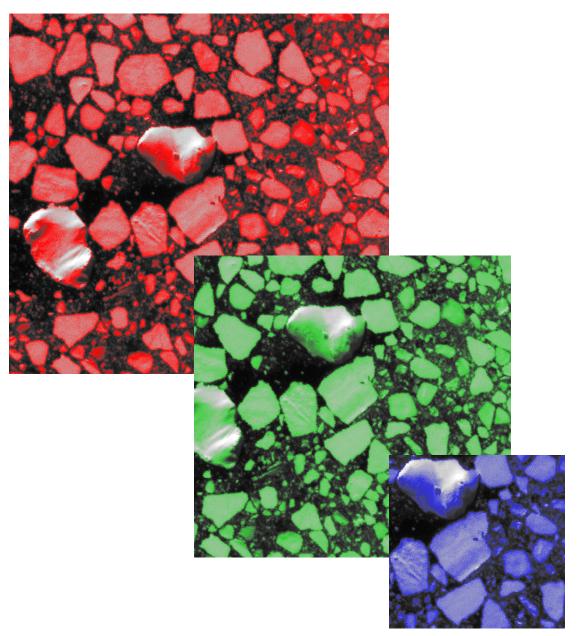
Multiscale training set

- Spatial pyramid
- Provide broad spatial context
- Broad context bands down-sampled to patch size



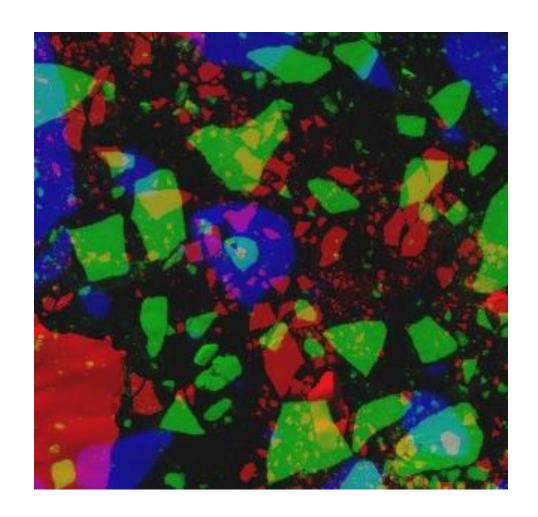
Multiscale training set

- Spatial pyramid
- Provide broad spatial context
- Broad context bands down-sampled to patch size



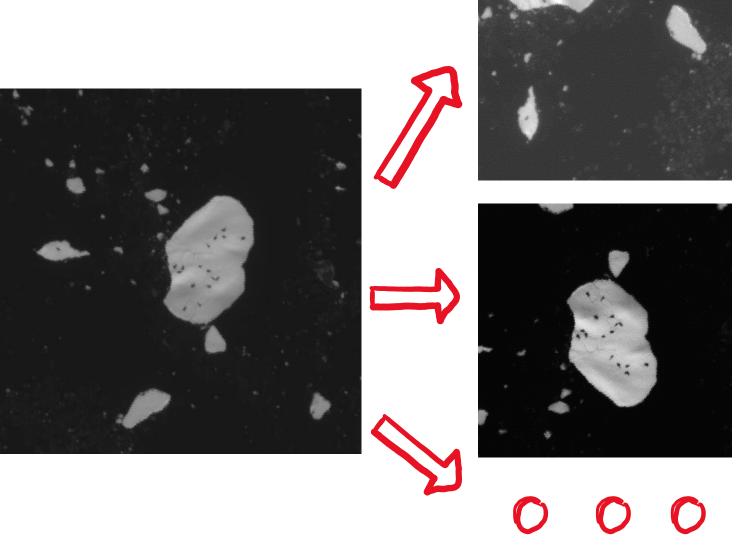
Multiscale training set

- Spatial pyramid
- Provide broad spatial context
- Broad context bands down-sampled to patch size

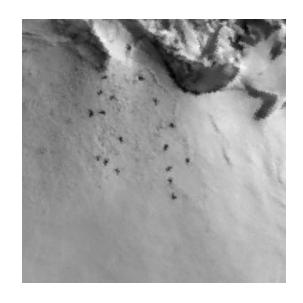


Data augmentation scheme

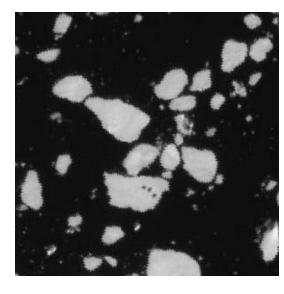
- Random crops
- Random rotations
- Mirroring
- Contrast
- Brightness



Positive classes



Weddell seal – 981 patches



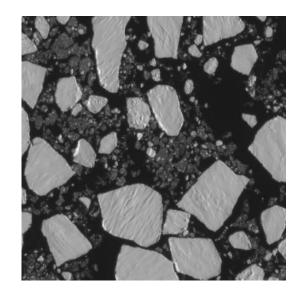
Crabeater seal – 4174 patches

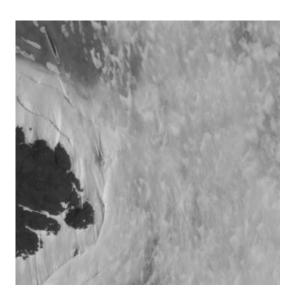
Emperor penguin – 7105 patches

Marching-emperor – 1060 patches

Hard negatives

• 7 classes, including open water, pack ice (without seals), etc.





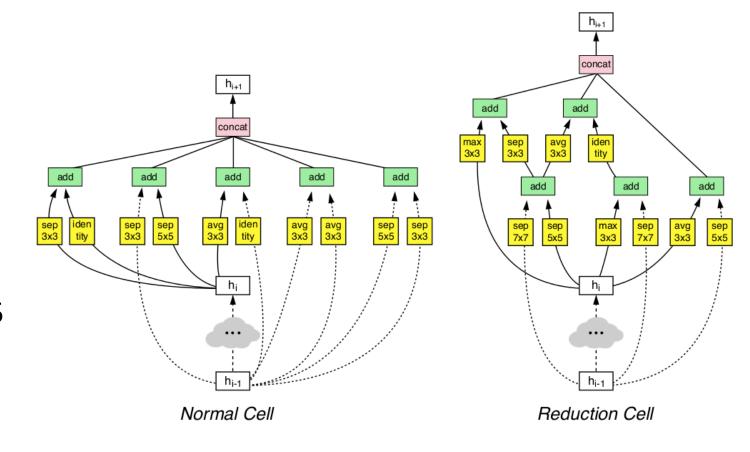
Haul out detection CNNs

Model architectures:

- Resnet18, Densenet169, etc.. (already implemented with PyTorch)
- NASNet (Zoph et al 2017)

Training setup

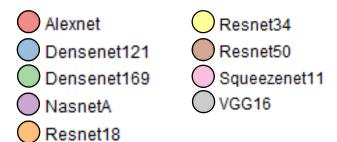
- Adam optimizer with learning rate 0.001 and 0.95 learning rate decay per epoch
- Trained from scratch with cross-entropy loss

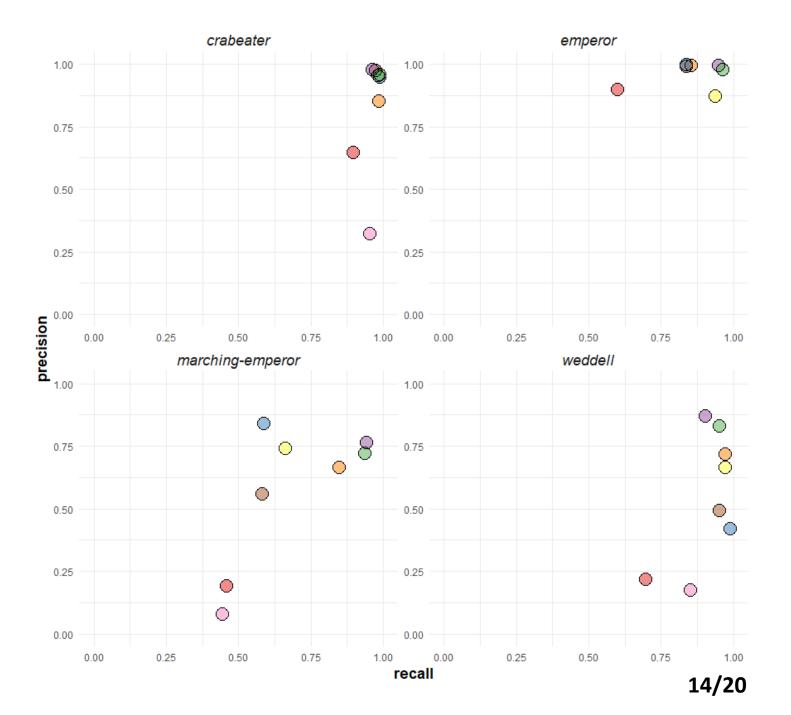


Validation

- Best performing architecture is task dependent
- Precision:TP / (TP + FP)
- Recall:TP / (TP + FN)

model architecture





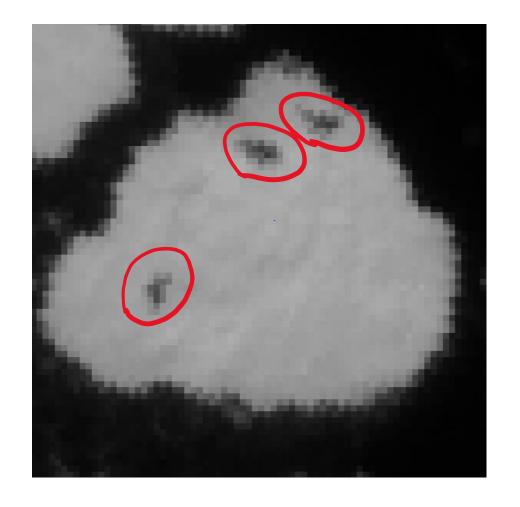
Solutions for counting small objects

Regression CNN

- Maps image to a real number
- Training objective: match groundtruth count (minimize mean-squared error)

Object detection CNN

- Detects individual seals in an image
- Training objective: match the position of predicted seals and ground-truth location (minimize Euclidean distance)

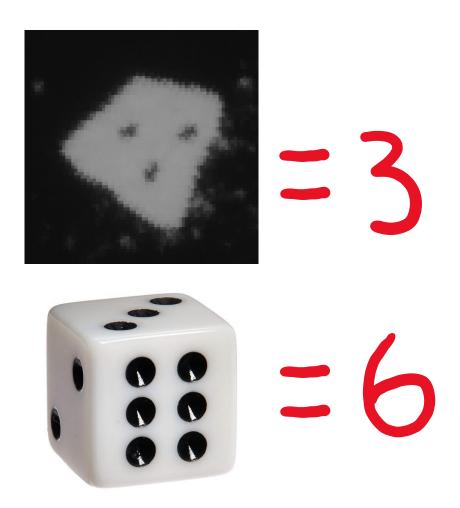


Regression CNNs

Model architectures

- CountCeption (Cohen et al 2017)
- WideResnet
- Modified classification CNNs

Subitizing



Regression CNNs

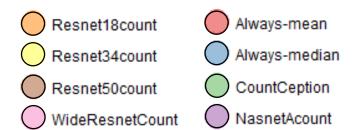
Model architectures

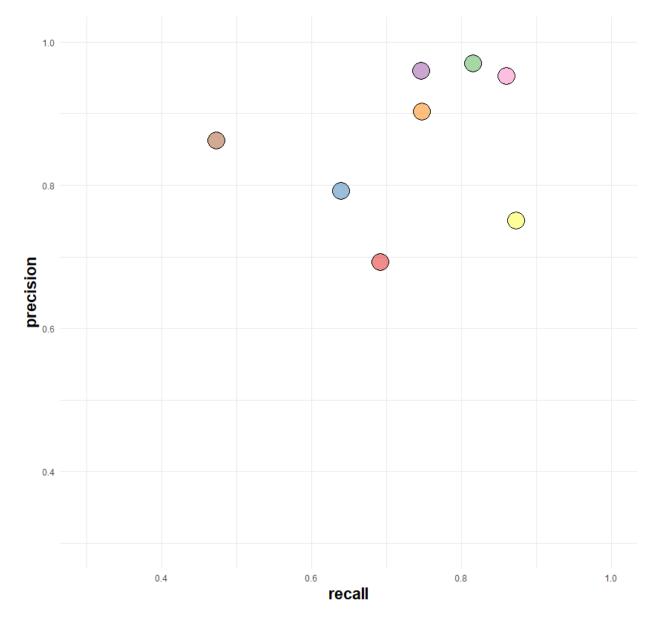
- CountCeption (Cohen et al 2017)
- WideResnet
- Modified classification CNNs

Subitizing

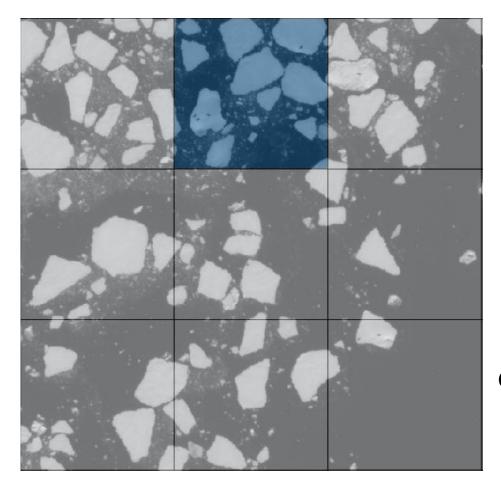
Validation results

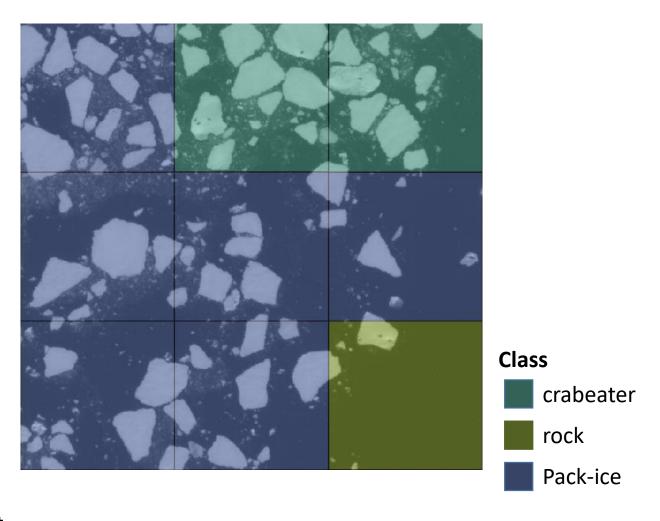
model architecture



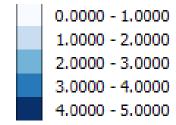


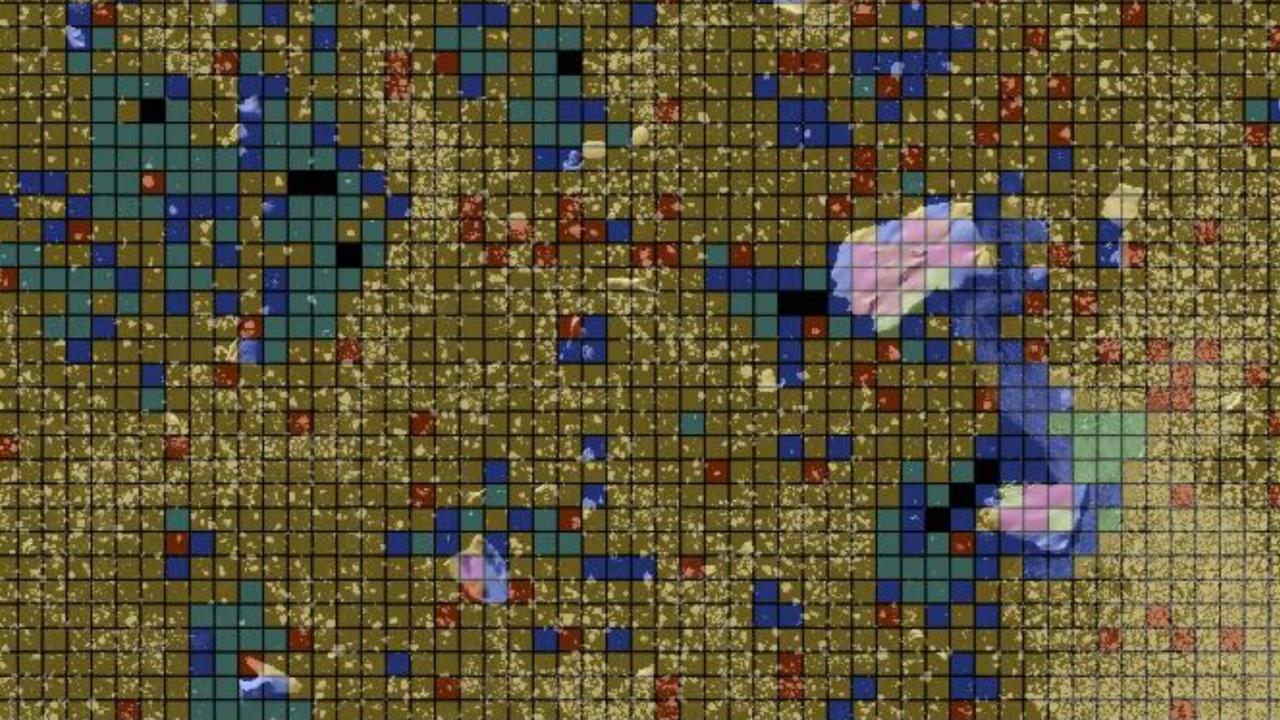
Pipeline output





Count



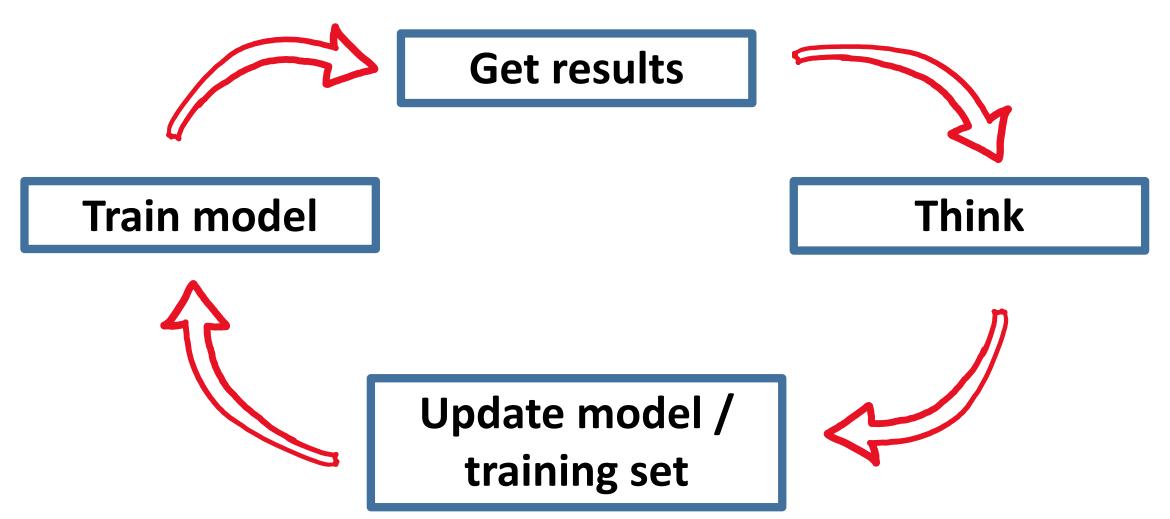


2018 onwards

Hyperparameter search

- The usual... (learning rate, decay, batch size, etc.)
- Input image size (training set and model)
- Augmentation scheme
- Number (and dimensions) of multi-scale bands (multiscale training set)
- Model architectures

Training a CNN: an iterative process



Summary

- Promising approach for pan-Antarctic pack-ice seal survey
- 2018 onwards:
 - 1. Larger training set (2017-18 imagery not yet incorporated)
 - 2. Apply pan-sharpening to panchromatic imagery training set
 - 3. Leverage environmental covariates and a priori knowledge about pack-ice seal biology
 - 4. Include broad spatial context for input patches
 - 5. Get better ground-truth for seal counts / locations

Summary

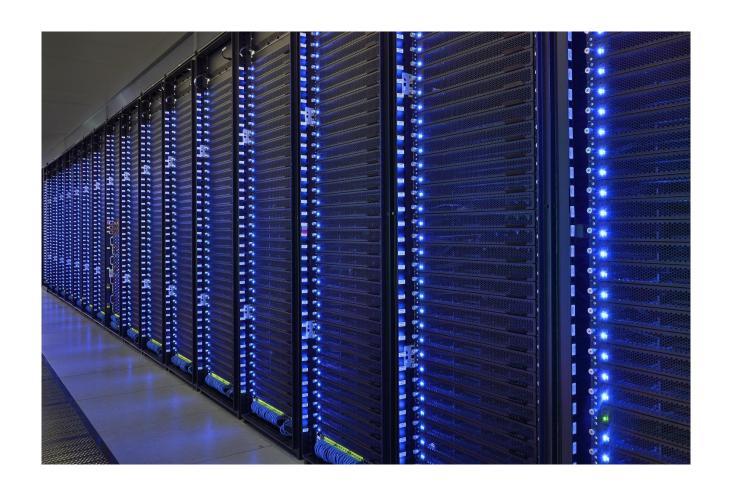
- Promising approach for pan-Antarctic pack-ice seal survey
- 2018 onwards:
 - 1. Larger training set (2017-18 imagery not yet incorporated)
 - 2. Apply pan-sharpening to panchromatic imagery training set
 - 3. Leverage environmental covariates and a priori knowledge about pack-ice seal biology
 - 4. Include broad spatial context for input patches
 - 5. Get better ground-truth for seal counts / locations

Computational resources significant – requires substantial investment in HPC cyberinfrastructure for imagery

Acknowledgements

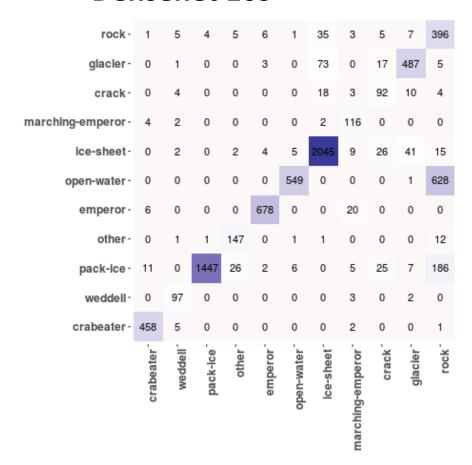
ICEBERG - Imagery Cyberinfrastructure and Extensible Building-Blocks to Enhance Research in the Geosciences

- One piece in the bigger picture
- Empowering polar sciences with HPC
- Bridges supercomputer



Confusion matrices (Haulout CNNs)

Densenet 169



NASnet

