

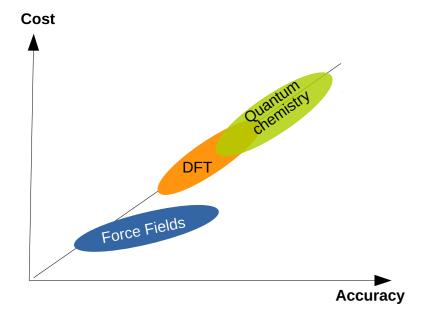
Combining DFT and Machine Learning Towards faster and more accurate ab-initio calculations

Sebastian Dick, Department of Physics and Astronomy, Stony Brook University Fernandez-Serra Group Jr. Researcher Award, 08/16/2018

Introduction

Simulations in Molecular Sciences

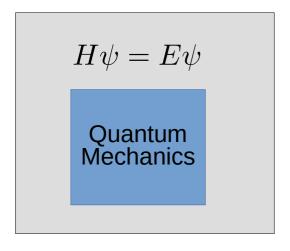
- Force Fields
- Density Functional Theory (DFT)
 - Quantum Chemistry

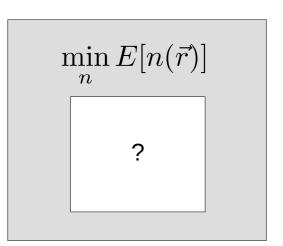


We use DFT because:

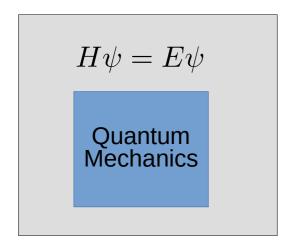
- Can scale to large systems sizes (100s to 1000s of atoms) + Periodic boundary conditions
 - → Condensed systems
- Non-empirical, hence unbiased
- · Fully reactive

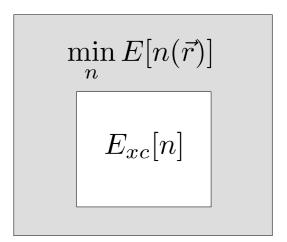
How does DFT work?





How does DFT work?

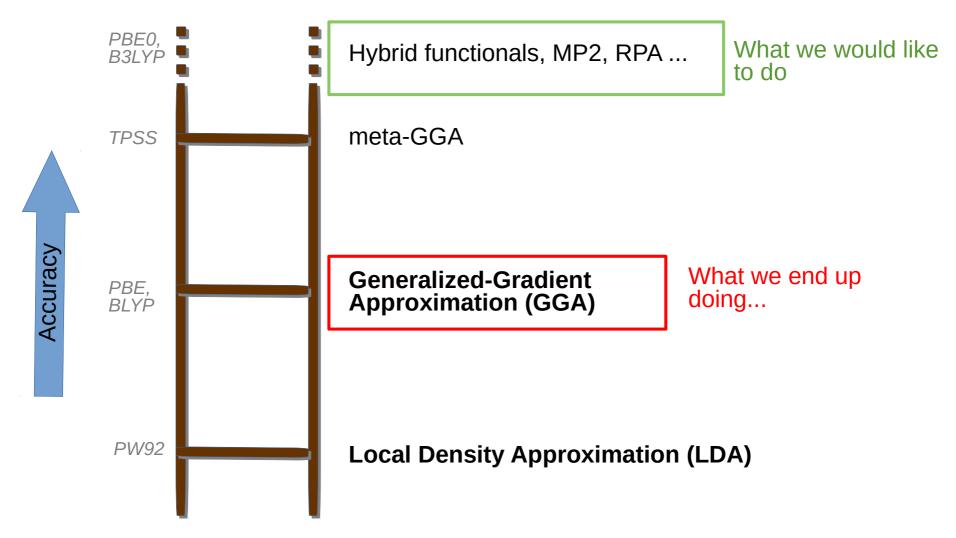




$$E[n] = T[n] + E_{xc}[n] + \int d\vec{r} V_{ext}(\vec{r}) n(\vec{r}) + E_{Hartree}[n] + E_{II}$$

Jacob's ladder

- A density functional approximation is uniquely defined by choosing $E_{xc}[n]$



Machine learning in Molecular Sciences

Force Fields

Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields *Chmiela et al, arXiv:1802.09238 (2018)*

SchNet – A deep learning architecture for molecules and materials JCP 148 (2018), Schutt et al

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces PRL 98 (2007), Behler, Parrinello

Electronic Structure

By-passing the Kohn-Sham equations with machine learning Brockerde et al., Nature Comm. 8 (2017)

Finding density functionals with machine learning Snyder et al, Phys. Rev. Lett. 108 (2012)

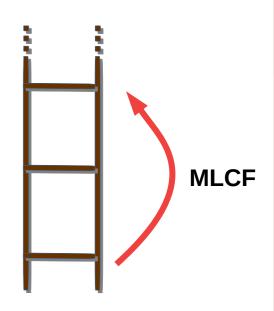
Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density Seino et al, JCP 148 (2018)

Machine learning in Molecular Sciences

Our idea: Machine Learned Correcting Functionals (MLCFs)

Train a neural network on the difference in predictions of physical observables (E, F, ...) of a lower accuracy **baseline** method (GGA) and a higher level **reference** method (Hybrid DFT, Coupled Cluster, ...)

→ get a higher accuracy at the cost of the baseline method



Force Fields

Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields *Chmiela et al, arXiv:1802.09238 (2018)*

SchNet – A deep learning architecture for molecules and materials JCP 148 (2018), Schutt et al

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces PRL 98 (2007), Behler, Parrinello

Electronic Structure

By-passing the Kohn-Sham equations with machine learning Brockerde et al., Nature Comm. 8 (2017)

Finding density functionals with machine learning Snyder et al, Phys. Rev. Lett. 108 (2012)

Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density Seino et al, JCP 148 (2018)

Machine learned correcting functionals (MLCFs)

Machine Learning

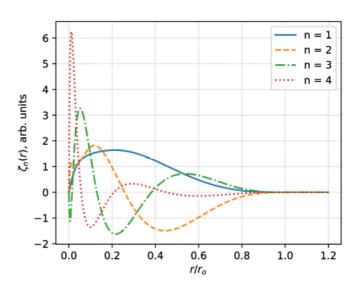
Informed Machine Learning for Maximal Extrapolation

Rather than provide all available (raw) data in an unbiased way, **knowledge about the physical mechanisms** involved is used to pre-process and select relevant data.

Trained on a small representative dataset the model should **generalize to unseen data**. In particular, the model has to be valid for **arbitrary system sizes**.

- Dataset: Water
 - *Training:* 640 Monomers, 1600 Dimers, 1200 Trimers
 - Testing: 160 Monomers, 400 Dimers, 300 Trimers, 50 Tetramers, 50 Pentamers, ...
- **Input:** Expansion of electron density around each atom into basis functions:

$$\psi_{nlm}(\vec{r}) = Y_l^m(\theta, \phi) \zeta_n(r)$$
$$\int_{\vec{r}} \psi_{nlm}^*(\vec{r}) \psi_{n'l'm'}(\vec{r}) = \delta_{nn'} \delta_{ll'} \delta_{mm'}$$

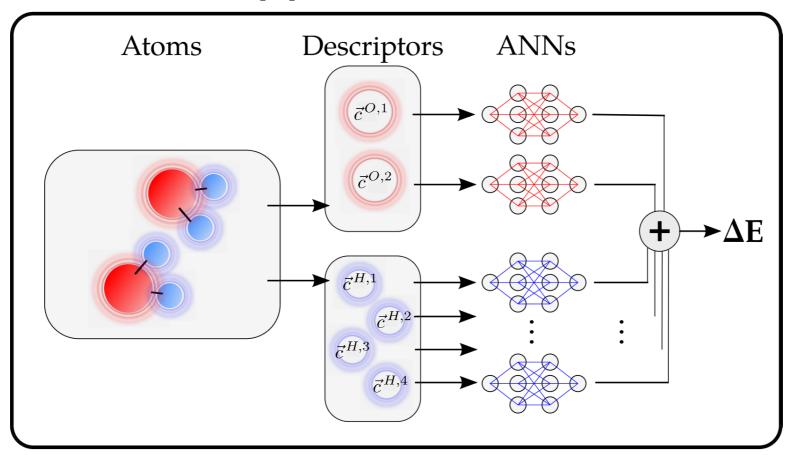


Electronic descriptors:

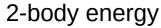
$$c_{nlm}^{\alpha,I} = \int_{\vec{r}} \rho(\vec{r} - \vec{r}_{\alpha,I}) \psi_{nlm}^{*\alpha}(\vec{r})$$
 Atomic species Atom index

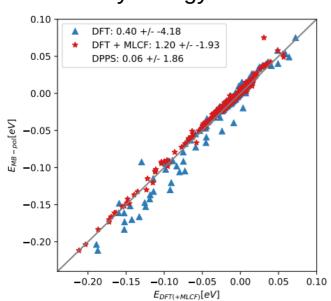
Targets: Difference between reference (MB-pol) and baseline (GGA + vdW) energies(/forces)

$$\Delta E = E_{reference} - E_{baseline}$$



Performance on water clusters



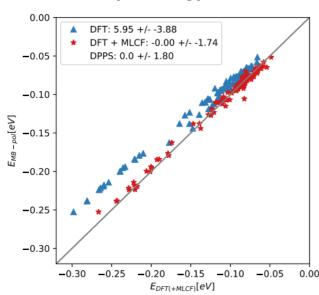


$\delta E = E_{ref}$ –	$-E_{pred}$
------------------------	-------------

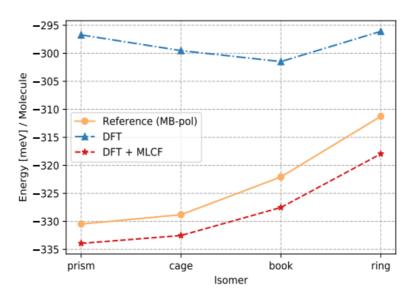
$\langle \delta E \rangle$		ecules $\langle \delta E \rangle$ $\sqrt{\langle (\delta E)^2 \rangle - \langle \delta E \rangle^2}$		$2 - \langle \delta E \rangle^2$
DFT	DFT+MLCF	DFT	DFT+MLCF	
-4.2	-1.4	64.3	2.0	
-5.8	-1.3	42.5	3.4	
-14.8	0.6	31.9	2.3	
-31.2	-1.0	9.4	2.7	
-31.9	0.0	12.3	3.0	
-28.9	2.3	9.3	3.1	
-26.1	6.6	6.2	2.5	
	-4.2 -5.8 -14.8 -31.2 -31.9 -28.9	DFT DFT+MLCF -4.2 -1.4 -5.8 -1.3 -14.8 0.6 -31.2 -1.0 -31.9 0.0 -28.9 2.3	DFT DFT+MLCF DFT -4.2 -1.4 64.3 -5.8 -1.3 42.5 -14.8 0.6 31.9 -31.2 -1.0 9.4 -31.9 0.0 12.3 -28.9 2.3 9.3	

Energies in meV/molecule

3-body energy



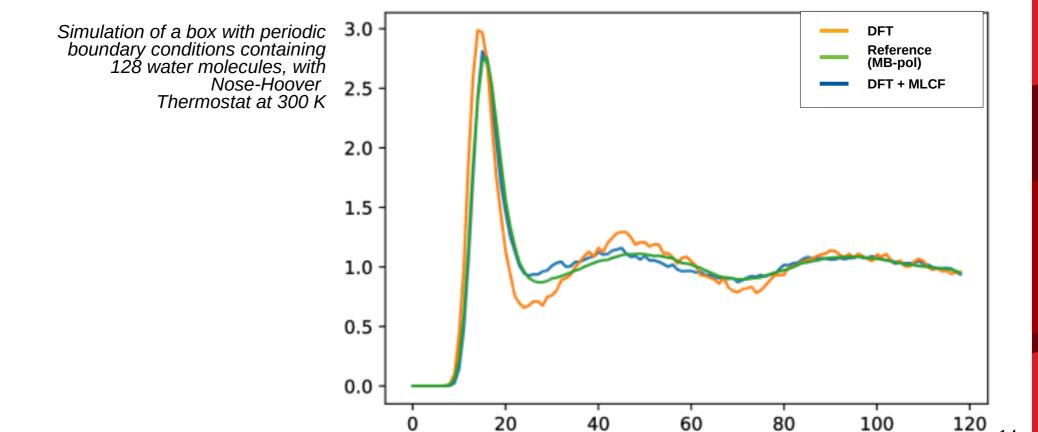
Hexamers



Fritz, Fernandez-Serra, Soler, J. Chem. Phys. 144, 224101 (2016), Supplementary Information

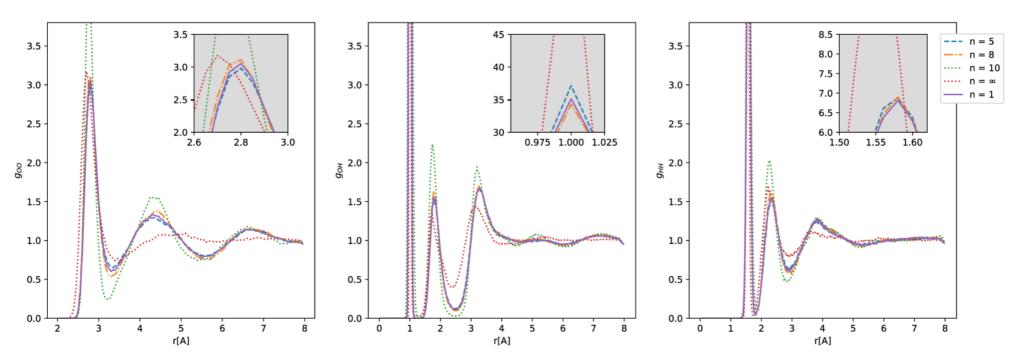
Correcting molecular dynamics simulations

- Ab initio molecular dynamics: Integrate the equations of motion with forces obtained from ab-intio calculations.
- GGA (DFT) is known to over-structure liquid water (peaks too high)
- Even though simulations not well converged yet (simulation time too short), MLCFs seem to correct this over-structuring



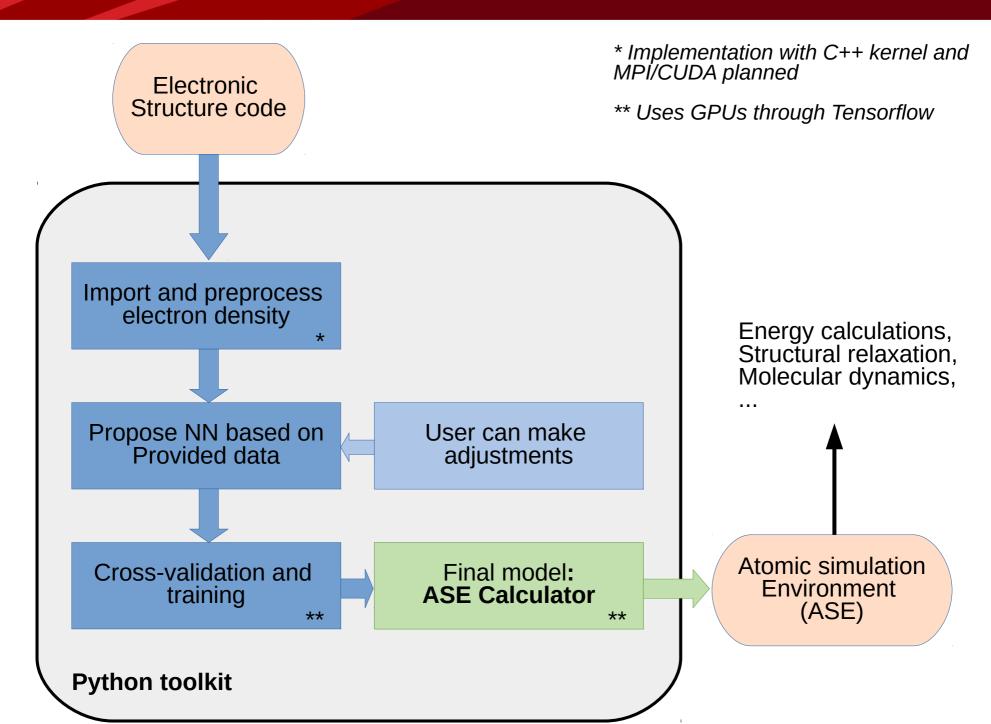
Using MLCFs to speed up MD calculations

- Start from very fast DFT calculation with very low accuracy (GGA, minimal basis set, coarse grid, relaxed convergence criteria)
- Large difference between baseline and reference → only approximate correction
- Solution: Every n-th MD step use reference method to calculate correction
- Speed-ups of up to a factor of 8 for water
- But: possible speed-up system dependent, careful validation necessary



Outlook

Python toolkit



Timeline

Timeline for 2018/2019:

- Sep Dec:
 - Implementation of basic Python toolkit, v0.1 on Github
 - First publication on MLCFs
 - Using MLCFs to study the solvation of NaCl in water (together with Alec Wills)
- Jan Apr:
 - Performance optimization (C++ and MPI/CUDA), v1.0 on Github
 - MLCF accelerated simulations of water-metal interfaces
- May Aug:
 - MLCF accelerated simulations of water-metal interfaces
 - MLCFs as an alternative to QM/MM? Implementation of QM/QM-MLCF algorithms.

Plans for 2019/2020:

- Can ML be used to correct the self consistent electron density? (Possible collaboration with Alan Aspuru Guzik @ Toronto)
- Màchine learned density functional kernels?
- Other semi-empirical methods for faster electronic sturcture calculations (Electron 'force-field', Collaboration with Jose Solers group @ Madrid)

Thank you!

Using MLCFs to speed up MD calculations

Replace QM/MM with QM/QM-MLCF:

