Parallel Programming Models for Heterogeneous and Manycore
Computing Nodes

Yonghong Yan', Barbara M. Chapman', Vivek Sarkar?, and Bronis R. de Supinski®
'University of Houston, ?Rice University, *Lawrence Livermore National Laboratory

Introduction

The High Performance Computing (HPC) community is heading toward the era of exascale machines,
expected to exhibit an unprecedented level of complexity and size. The community agrees that the
biggest challenges to future application performance lie with efficient node-level execution. The
amount of processing power within each node is expected to grow by three to four orders of
magnitude through a significant increase in on-node concurrency and through innovations in diverse
areas from packaging to memory hierarchies. These nodes might be comprised of many identical
compute cores in multiple coherency domains, or they may contain specialized cores that perform a
restricted set of operations with high efficiency, together making heterogeneity and manycore design a
typical architecture. Although we anticipate physically shared memory within each node, access
speeds will vary considerably between cores and between types of memory. Further, the node may
present distinct address spaces to different computing elements, as demonstrated in today’s
accelerator architectures.

One of the critical challenges for using the massive parallelism capability within an application is the
provision of programming models that facilitate the expression of the required levels of concurrency
while permitting an efficient implementation by the system software stack. Node-level parallel models
include thread-primitives such as the conventional pthreads and C++11 thread and Boost thread
library for CPU/SMPs; low-level programming models for GPGPU accelerators such as CUDA and
OpenCL; directive-based programming models for accelerators such as OpenMP and OpenACC while
OpenMP also provide rich sets of features supporting general shared memory systems; and other
less-widely used options for example Cilkplus, TBB and vector primitives. While internode-
programming models can also be used for programming intranode parallelism, typically MPI, Charm++,
PGAS (UPC, CAF and OpenSHMEM) and APGAS (X10 and Chapel), they are mainly designed for
handling data movement across networks for internode parallelism.

Features and models compared

A single intranode-programming model that meets the diverse requirements of exascale computations
(both applications and architectures) must support the following features:

Parallelism patterns: The model should allow users to specify at least the following three parallelism
patterns: data parallelism, which typically maps well to the manycore accelerators and vector
architectures; asynchronous task parallelism that easily supports certain application algorithms for
parallel computations; and data-driven computations.

Data movement and locality control: The model must support (and not merely enable) NUMA
architectures, data-computation binding and explicit data mapping between different memory spaces.
Synchronizations: The programming model should support synchronization between various parallel
work units, such as barrier operations, point-to-point synchronization and phase-based
synchronization for streaming computations.

Mutual exclusion: Interfaces such as locks and hyberobjects are still widely used for protected data

access. Architectural changes such as transactional memory provide alternatives to achieve similar
data protection, which could also be part of the interfaces of a parallel model.
Interoperability: One intranode-programming model should support interoperability with other models within
a node and also with the internode-programming model and libraries such as MPl and PGAS.
Other important features: Specifically, I/0, error/resilience, tools support, and language/library binding are
also important features that a programming model should support.
With these features, we have compared a list of node-level programming model in Figure 1.

Data Async task | Data-Driven Data movement Mutual Language
Parallelism | Parallelism | computation an;ioll:)t(illlty Synchronization| p 4 oo Interop binding or lib Resilience |Tool support|
parallel for, depend (in - . - language
OpenMP (4.0) [SIMD, teams and| task/taskwait oft|ino£t)| affinity and Barriersand |Locks, critical) . (?) |extension(C/C++, omp cancel OMPT
S places reductions atomic
distribute Fortran), pragma
Cilkpl ik for/SIMD cilk_spawn/ None N h bi Lock With TBB (? language bort(? Cilkcreen
ilkplus cilk_for/ sync one yperobjects ocks it ™ extension, C/C++ abort(?) Cilkviewer
data-driven
Habanero foreach async/finish future places phaser isolation HCMPI Cand Java None None
pthread_creat N . pthread_can
pthread None e/join one None pthread_cond | mutex/lock N/A C/C++lib cel None
qthread_readF
qthread qthread_for | qthread_fork | g fyture_init shepherd reduction lock N/A C/C++lib ? ?
parallel_for/ | Generic algs, None barrier, With Cilkplus .
Intel TBB while/do, etc tasks None reductions, etc mutex) C/C++lib ? None
PLINQ,
MS .Net Parallel ! Locks,
None 4
Extensions | ParallelFor/ TPL None Futures monitors ? c# None 2
foreach
OpenACC acc None None data barrier, reduction No No C/C++and None None
Fortran
CUDA 5.0 SIMT None None host-device lib Barriers None N/A C/C++ None merg;l;eck,
OpenCL SIMD None None host-device lib Barrier No N/A C/C++ None None
Java Executors Locks,
Concurrency | threadpool | & o oieues None None Synchronizers | monitors, ? Java ? ?
atomic classes
Figure 1: Features compared of intranode parallel programming model
Conclusion

As shown in Figure 1, OpenMP clearly supports more features than others in the categories that we discussed

in the last section. Known as a productive parallel programming model for shared memory machines, OpenMP
has evolved in the latest 4.0 and the ongoing 5.0 developments into a multi-language and high-level
programming standard to address the needs for a wider community than HPC.

The choices for a parallel model for a particular applications and/or hardware architecture depends on both the
programmability of the model and the performance delivered to users by the implementations, and the
tradeoff between them. For example, GPGPU accelerator support in high-level programming interface, one of
the urgently needed features of parallel node-level programming, is now available in both OpenACC and
OpenMP, with OpenACC being developed earlier and with more existing compiler support. However, a wide
variety of users would still like to use proprietary CUDA model or NVIDIA libraries for their applications despite
their productivity challenges because they deliver higher performance than the high-level programming models.
The selection of a programming model needs experimental studies and profiling, as well as the evaluation of
programming model implementations, combining the analysis of application algorithms, data layout and access
patterns with regards to the hardware architectures.

