

Verification, Validation and Uncertainty Quantification in Astrophysics

Alan Calder

M. Katz, D. Swesty, D. Willcox (Stony Brook) S. Ferson (Applied Biomathematics and SBU)

Sensitivity, Error and Uncertainty Quantification for Atomic, Plasma, and Material Data

November 8, 2015

1

Outline

- Introduce problem- stellar explosions known as supernovae
- Validation experiments designed to mimic astrophysical environments.
 - Laser-driven unstable shocks
 - Rayleigh-Taylor Instability
- The lives of stars
 - Hertzsprung-Russel diagram
 - Evolution of stars on H-R diagram
- Uncertainty Quantification Study
 - State of the art MESA simulation code
 - Uncertainty in progenitor of SNe Ia supernovae that are calibrated to be "standard candles"
 - Intrinsic scatter of SNe Ia is large source of uncertainty in observational studies probing dark energy

Type Ia Supernova Simulation

3

Jordan et al. 2008

- SN la are a multi-scale, multi-physics problem:
 - Reactive Euler equations with self-gravity (multi-dimensional!)
 - Equation of state for degenerate matter
 - Flame model (width/radius < 10⁻⁹)
 - Nuclear Energetics: ¹²C+¹²C; burn to Nuclear Statistical Quasiequilibrium (Si group); burn to Nuclear Statistical Equilibrium (Fe group).
 - Emission of v's result in energy loss, ΔY_e (neutronization)
 - Turbulence-flame interaction.
- Connection to observations
 - Post-process lagrangian tracers with > 200 nuclide network to obtain detailed abundances
 - Mult-frequency radiation transfer to get light curves.
- Realistic models should also include:
 - Rotation
 - Magnetic fields

Astronomical Appearance

Observations: light curve, the observed intensity of light, and spectrum.

Light curve rises in days, falls off in weeks.

P. Nugent (LBNL)

Fluid Instabilities in Astrophysics

STScl

- Observations, e.g. ⁵⁶Co in SN 1987A, indicate that fluid instabilities play an important role.
- Astrophysical observations often are indirect, but laboratory experiments offer direct observation.

Η

- Two experiments in environments similar to the interiors or stars.
- Similar, but not the same.
- Note- validation study came about under DOE ASC program.

" α -Group" Consortium

- Organized by G. Dimonte (Oct. 1998)
- Purpose to determine if the t² scaling law holds for the growth of the R-T mixing layer, and if so, to determine the value of a
 - simulation experiment comparisons
 - inter-simulation comparisons

$$h_{b,s} = \alpha_{b,s} gAt^2$$
, where $A = (\rho_2 - \rho_1)/(\rho_2 + \rho_1)$

Definition of standard problem set (D. Youngs)

Multi-mode Rayleigh-Taylor: 2-d Simulation

Horizontally Averaged Density

Modes 32-64 perturbed

Bubbles of the lighter fluid in the denser fluid

t = 14.75 sec

Rendering of Mixing Zone

Density (g/cm^3) at t = 14.75 sec

It looks similar to the simulation.....

Single-mode 3-D Rayleigh-Taylor

Single-mode 3-D Rayleigh-Taylor

- Simulations disagreed with experiment.
- Simulations agreed with simulations by others in the α-group.
 Utility of code-code comparisons?
- Experimentalist was skeptical of his own data.
- Summary- learned a vast amount, but did not validate.

Three-layer Shock Imprint Experiment

- Performed at the Rochester Omega laser facility
- Strong shock driven through a planar, copper-plastic-foam three-layer target
- Rayleigh-Taylor and Richtmyer-Meshkov instabilities

Movie

Images from the experiment

Simulated radiographs

Resolution Study

Convergence results: percent difference

- Simulations used a gamma-law EOS, $P = (\gamma 1)\rho\epsilon$, with choice of gamma to match experimental result
- Periodic boundary conditions on sides- no shock tube in the simulations
- Radiation deposition mechanism not included in the simulations
- Experimental diagnostics do not allow us to determine the correct amount of small scale structure

- Bright stellar explosion
- Type la- thermonuclear incineration of a compact star
- Converts lower-mass elements to higher-mass elements.
- Binding energy release powers the explosion
- Display powered by radioactive decay of ⁵⁶Ni

http://apod.nasa.gov/apod/ap150531.html 49

Exploding Stars as Standard Candles

- A successful explosion requires a WD composition with a significant fraction of C.
- Composition follows principally from initial mass of main sequence star.
- Additional mass gained from accretion from companion.
- Question- what range of initial masses produce enough C? How are initial masses distributed and can we relate that host galaxy properties?

- Question- how does one do UQ with a "black box" code in general if one can't assume linearity of the outputs from changes in the inputs, or more generally, if one can't even estimate the dependence?
- Big picture is the uncertainty in the "pipeline" to simulate an astrophysical event.
 - Can't do end-to-end simulations, so work in stages with different technology for each.
 - Create hierarchy in which some simulations serve as sub-grid-scale models for others.
- Our problem- evolution of star from birth to explosive death to quantify uncertainty in the observed outburst.
- Want a language of uncertainty in astrophysics and hope to contribute to methodology.

- Modules for Experiments in Stellar Astrophysics (mesa.sourceforge.net)
- 1-d hydrodynamics coupled to additional physics (reactions and diffusion)
 - Simultaneously solves fully coupled structure and composition equations.
 - Independently usable modules:
 - EOS
 - opacity
 - nuclear reaction rates
 - atmosphere boundary conditions
- Many of the issues with turbulent dynamical systems apply
 - Non-linear evolution equations
 - Large parameter space
 - Wide range of energy, length, and time scales
 - Possibly discontinuous results

Low-mass stellar evolution as we teach it

Stony Brook University Low-mass stellar evolution as we teach it

*

Stony Brook University

66

- Really after intrinsic scatter of Type Ia brightness to improve precision of cosmological results.
- Identified parameters of interest
 - Initial mass and composition (aleatory uncertainty or variability)
 - Stellar wind (epistemic uncertainty or incertitude)
- Performing sensitivity analysis:
 - Uniform march through model parameters
 - Cauchy deviates to bound results
 - Monte Carlo
 - Simulations from a distribution of physical parameters

QUESTIONS AND DISCUSSION

Please send comments or ideas to alan.calder@stonybrook.edu

Bibliography

- MESA Code:
 - http://mesa.sourceforge.net/
 - Paxton, et al. ApJS 192, 3, (2011)
 - Paxton, et al. ApJS 208, 4, (2013)
- UQ/V&V
 - Kreinovich and Ferson, Texas CS report UTEP-CS-02-28a, Reliable Engineering and Systems Safety 85, 267 (2004)
 - Calder, et al. ApJS 143, 201 (2002)
 - Dimonte, et al. PhFl 16, 1668 (2004) (α-group)
- SN la modeling:
 - Calder, et al. ApJ 635, 313 (2007)
 - Townsley et al. ApJ 688, 1118 (2007)
 - Townsley, et al. ApJ 701, 1582 (2009)
 - Krueger et al. ApJ 719, L5 (2010)
 - Jackson, et al. ApJ 720, 99 (2010)
 - Krueger et al. ApJ 757, 175 (2012)
 - Jackson, et al. ApJ 784, 174 (2014)