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Table	2:	Comparison	of	operations	per	iteration	and	memory	requirements	of	
various	KSP	methods.	n denotes	the	number	of	rows,	l	the	average	number	of	non-
zeros per	row,	and	k the	iteration	count.	

Krylov subspace	methods	are	widely	used	in	solving	large	sparse	linear	systems	
from	PDE	discretizations.	For	symmetric	systems,	CG	and	MINRES	are	typically	
the	best.	For	nonsymmetric systems,	which	often	arise	in	practice	from	PDE	
discretizations,	boundary/jump	conditions,	irregular	meshes,	no	KSP	method	is	
apparently	optimal.	The	goal	of	this	work	is	to	perform	a	systematic	
comparison	and	in	turn	establish	some	practical	guidelines	in	choosing	the	
best	combinations	of	the	pre- conditioned	KSP	solvers.	We	consider	four	KSP	
methods,	restarted	GMRES,	TFQMR,	BiCGSTAB,	QMRCGSTAB,	coupled	with	
three	preconditioners,	Gauss-Seidel,	incomplete	LU	factorization	(ILU),	
algebraic	multigrid (AMG).

For	3D	tests,	we	generated	three	unstructured	meshes,	using	PDE	
discretizations (FEM,	AES-FEM,	GFD)	of	a	cube	at	different	resolutions	using	
TetGen,	to	facilitate	the	scalability	study	of	the	preconditioned	KSP	methods	
with	respect	to	the	number	of	unknowns.	For	the	finite	difference	method,	we	
consider	a	matrix	obtained	from	an	unequally	spaced	structured	mesh	for	the	
Helmholtz	equation	with	Neumann	boundary	conditions,	so	the	matrix	has	a	
very	large	condition	number.
Results	were	obtained	using	the	high-performance	LI-RED	computing	system	at	
the	Institute	for	Advanced	Computational	Science	of	Stony	Brook	University.	

2.	Comparison	Setup

4.	Convergence	Results

Figure	1:	Relative	residual	versus	iteration	count	for	Gauss-Seidel,	ILU	and	ML	preconditioners
for	FEM	3D	(197,881,373	unknowns)	and	Helmholtz	Equation	2D	(6,694,058	unknowns).
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6.	HYPRE	Versus	ML	Preconditioner
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Figure	2:	Timing	results	for	FEM3D	on	the	left	and	Helmholtz	2D	on	
the	right,	encircled	bars	indicate	the	fastest	solver-preconditioner
combination	in	timing	results;	star	(*)	indicates	stagnation.	

• For	a	very	large,	reasonably	well-conditioned	 linear	
system,	use	GMRES	with	smoothed-aggregation	AMG	
as	right	preconditioner.	If	AMG	is	unavailable	and	the	
problem	size	is	moderate,	BiCGSTAB with	ILU	as	right	
preconditioner is	a	reasonable	choice.	

• For	ML	or	Hypre,	the	scalability	for	the	four	KSP	
methods	is	nearly	linear,	whereas	Gauss-Seidel	and	
ILU	are	less	scalable.	Therefore,	the	performance	
advantage	of	multigrid preconditioners would	
become	even	larger	as	the	problem	size	increases.	

• Hypre performs	better	than	ML	for	ill-conditioned	
systems,	indicating	no	clear	winner.	These	results	also	
indicate	that	more	research	into	multigrid
preconditioners are	needed.
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Figure	3: Scalability	result	of	the	preconditioned	solvers	in	terms	of	
number	of	unknowns.
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