
Parallel programming tools for the future: Perspective from the developers of a big 

quantum chemistry package 

I.A. Kaliman, E. Epifanovsky, A.I. Krylov 

Introduction 

Continuing advances in computer hardware enable yet bigger systems to be simulated using 

high-level ab initio techniques such as coupled-cluster theory that represents the “gold standard” 

in quantum chemistry. However, during the past several years increases in single-core computing 

performance have stalled due to physical limits on transistor sizes and clock speeds achievable at 

the current manufacturing technology. Even on mobile devices the dominant increase in 

computational power comes not due to an improved single-core performance but because of 

increasing number of processing units. Growing interest in energy-efficient computing also 

contributes to the trend of using many slower but less energy-hungry processors at 

supercomputing facilities. The state-of-the-art supercomputers have hundreds of thousands of 

processing cores with projections predicting millions of cores at exascale computing facilities 

within next five years. Moreover, to achieve even more efficient utilization of computer 

resources most computationally intensive tasks are offloaded to more energy efficient specialized 

hardware accelerators. This presents a challenge of adapting high-level quantum chemistry 

techniques to modern multi-node/multi-core/accelerator-enabled architectures. Here we will 

highlight some problems of modern parallel tools from the perspective of the developers of a big 

quantum chemistry package, such as Q-Chem. We will also discuss potential opportunities for 

future parallel models and environments. 

The pace of technology 

New technologies are always exciting. But developers of quantum chemistry software are also 

concerned about the rapid pace of change. Development of a big package take decades and 

adapting the codes to new technologies like GPGPU or Intel Xeon Phi is not always easy 

because of the need to learn new programming models, application programming interfaces 

(APIs), and architecture details of new hardware. The main concern that by the time the code is 

stable and polished the technology is outdated and one needs to start from scratch. When a new 

technology arrives many jump on board to use it when the hype is big, only to find out that the 

code becomes obsolete when the vendor discontinues the product. IBM Cell processor serves as 

a recent unfortunate example. This innovative CPU was first introduced in the Sony PlayStation 

3 console and used later in a number of supercomputers. But in the new generation console Sony 

opted for a more pragmatic approach with a conventional CPU design which destroys the hope 

for future widespread use for Cell design. Unfortunately a lot of effort invested in developing 

new software for this unconventional CPU would not pay off. 

Because of the complexity of computational chemistry codes the development of reliable 

packages takes years. But with current pace the technology can be outdated even before the 



implementation is finished. The problem is exacerbated in academic environment where the 

development cycles are usually much longer than in industrial setting due to funding constraints 

and personnel (students, PostDocs) turnover. This highlights the need for higher level 

abstractions for new hardware and parallel programming models. Both for developers and users 

it is important that the code will work long in the future. We believe that standardized 

technologies like OpenCL – a framework for writing the programs that execute across 

heterogeneous platforms – take us in the right direction. The same should be for other parallel 

tools and environments. 

Keeping things simple 

One of the major factors contributing to the not-invented-here syndrome in scientific software 

community is lack of guarantees that new tools will be maintained in future. All too often very 

promising software is abandoned when the funding runs out or the interests of the developers 

change to other things. Making the tools open-source with a liberal license and encouraging 

people from outside to work on them is a possible hedge against the fate of dying. Designing 

simpler tools which are easy to use and understand should lower the entry barrier for outside 

developers. The developers of quantum chemistry packages can provide valuable feedback and 

code to the parallel community. 

We believe that having good and concise documentation is as important as having the working 

tools and standards. Unfortunately, through many years of development both codes and texts 

become bloated. Message Passing Interface (MPI) standard which is by the time of 3.0 release 

contains 852 pages and hundreds of functions can serve as an example here. Despite a vast 

number of functions in the standard for the majority of scientific codes only a handful are truly 

useful. The focus of the developers of future tools should be not only on cool new algorithms but 

also on a good yet concise documentation. APIs should be easy to use and understand for a wider 

audience of scientific application developers. Standard committees should carefully weight how 

high-level their APIs should be. Low-level APIs can help squeeze every bit of performance from 

the hardware. Yet they are usually harder to use and are much less stable when the hardware 

changes. The challenge for developers of parallel tools is to find right balance between the ease-

of-use and stability of APIs versus the amount of power the users have in controlling the details. 

What should already be there but isn’t 

All high level quantum chemistry methods rely on manipulation of multidimensional tensors and 

matrices. Because of huge size of such tensors the naïve in-memory algorithms often cannot be 

applied directly. The lack of standard library for manipulation of big tensors is apparent. That is 

why almost every quantum chemistry package has its own in-house tensor library 

implementation. Q-Chem, PSI, NWChem can all serve as an example. Operations on tensors 

have no special relationship to computational chemistry and are useful in a number of different 

fields. A good parallel tensor library could have been developed a long time ago in the spirit of 



LAPACK/ScaLAPACK. Yet, no suitable alternative to in-house development is available. We 

believe that there should be a common library implementing such functionality. But the standard 

should come not from some governing body but from the implementers themselves, as was the 

case with FFTW library, which is now a de facto standard for fast Fourier transforms. We want 

to believe that one of these libraries (or a new one from HPC community) will finally become 

the standard eliminating the need to maintain in-house functionality that can be shared. In future 

vendors may provide their optimized implementations which share common interface, as is the 

case with BLAS/LAPACK. 

Truly free license 

Software licensing may pose a big problem for commercial application development. “Viral” 

open-source licenses like GPL force people to share contributions and release the source code 

back into the community if they want to redistribute software that uses GPL-licensed code. 

Because of such restrictions GPL-licensed code cannot be used in closed-source packages. 

Adopting less restrictive licenses like BSD or MIT would benefit the community by enabling 

commercial software to use future tools and libraries greatly expanding their impact. Even 

though these licenses do not force people to share the code it does not mean that commercial 

developers won’t give back to the community. For example, many parts developed for Q-Chem, 

like libefp and libtensor libraries, as well as IQmol software, are open sourced and available 

under liberal licenses. As an additional example we may point out to the LLVM/Clang compiler 

which immensely benefited from being adopted by Apple because of its permissive license. 

Fault tolerance from the start 

One of the biggest problems of new exascale machines will be inevitable hardware failures 

during calculations. Software running on tens of thousands of processors may experience 

multiple hardware and software failures during a single calculation. To our knowledge no widely 

used quantum chemistry package implements any sort of fault tolerance. That is, if one process 

crashes the whole calculation has to be restarted from the beginning. Check-pointing might be a 

good first step towards fault tolerant software, but fine grained checkpoints are not always 

possible owing to huge tensor sizes in quantum chemistry. This can affect performance 

negatively as the nodes usually have no local disks and permanent storage can only be accessed 

on a slow shared file system. Optimal fault tolerant solutions would implement algorithms which 

are able to restart parts of a calculation in response to a failed process without bringing down the 

whole simulation. At the same time we believe that scientific software developers should not 

have to explicitly deal with soft errors like bit-flipping caused by thermal noise or cosmic 

radiation. These are to be dealt with on a lower hardware and/or software level like it is the case 

with ECC memory today. Protection against such errors should be extended to other parts and 

communication channels of the hardware. 



Designing fault tolerant quantum chemistry software would require rethinking many algorithms 

and in some cases radically changing design. The tools and models that will help dealing with 

this task would be of great importance in future. 

Conclusion 

In this short article we shared some of the concerns of the developers of a big quantum chemistry 

package with a broad user base. We hope that this feedback will be valuable to the parallel 

software community and the points presented here will be taken into account when designing 

future tools and environments for parallel application development. 


