Quantum 3-body Coulomb problem: a numerical challenge (?)

Alexander Turbiner

(with J C Lopez Vieyra and H Olivares-Pilon)

Stony Brook University and Instituto de Ciencias Nucleares, UNAM

October 22, 2015

Reduced 3-body problem:

$$(Ze, M)$$
 and two identical $(-e, m)$

$$V = -\frac{mM}{r_1} - \frac{mM}{r_2} - \frac{m^2}{r_{12}}$$

Kepler problem

$$V = -\frac{Ze^2}{r_1} - \frac{Ze^2}{r_2} + \frac{e^2}{r_{12}}$$

Coulomb problem

Two Particular Cases:

One-center case
$$M = \infty$$

(Helium-like atom)

Two-center case
$$m = \infty$$

(H₂⁺-like molecular ion)

The Hamiltonian

$$\mathcal{H} = -\frac{1}{2M}\Delta - \frac{1}{2m}(\Delta_1 + \Delta_2) - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}$$

with $r \in \mathbb{R}^6 \oplus \mathbb{R}^3 \to \mathit{Centre-of-Mass can be separated out}$ The Schrödinger equation

$$\mathcal{H}\Psi(x) = E\Psi(x)$$
 , $\Psi(x) \in L^2(\mathbf{R}^6)$

not always has solutions.

- Critical charge Z_B is a value of Z which separates the domains "existence $(Z > Z_B)$ /non-existence $(Z < Z_B)$ " of solutions in the Hilbert space
- Z_{cr} The ionization energy is zero, the system can decay at $Z < Z_{cr}$

$$(Zp, e, e) \Rightarrow (Zp, e) + e$$

Are these Z_B and Z_{cr} related?

EXAMPLE: the Hydrogen atom $(M = \infty)$

$$\mathcal{H} = -\frac{1}{2}\Delta - \frac{Z}{r}$$

Ground state energy

$$E_0 = -\frac{Z^2}{2}$$

is entire function in Z (no singularities), but

$$Z_{cr}=0$$

(potential is equal to zero)

No analytic continuation of E_0 to negative Z!

$$\Psi_0 = e^{-Zr}, Z > 0$$

Rigorous mathematical results:

- ▶ Energy $E(Z)/Z^2$ is analytic around $Z=\infty$ (T. Kato, 1951) it is given by convergent Taylor expansion what is radius of convergence?
- At Z = 2 there are infinitely-many bound states but at Z = 1 finitely-many (D. Yafaev, 1972) there must be Z* where the transition happened infinitely-many bound states disappear how it happened?
- Ground state $\Psi(x; Z = Z_{cr})$ is normalizable (B. Simon, 1977)

Methods used to solve:

- Variational (linear and recently, nonlinear)
- ▶ Non-uniform lattice Lagrange mesh (D Baye , H Olivares)

Physics: integer Z = 1, 2, 3, ...

- Energies (... Nakashima-Nakatsuji, 2007)
- Z_{cr} (... Drake et al, 2014, H Olivares & AT 2014)
- ► Transition amplitudes (D Baye, ..., H Olivares 2014)

The two-electron ion sequence (helium isoelectronic sequence) $(M = \infty)$

$$\mathcal{H} = -\frac{1}{2}(\Delta_1 + \Delta_2) - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}$$

at Z > 2 \Rightarrow 2e-ion (infinitely-many bound states)

at Z = 2 \Rightarrow Helium atom (infinitely-many bound states)

at $Z = 1 \Rightarrow \text{Negative Hydrogen ion (single bound state)}$

Critical charge

$$Z_{cr} \sim 0.91 \dots$$

the ionization energy is zero, the system can decay at $Z < Z_{cr}$

$$(Zp, e, e) \Rightarrow (Zp, e) + e$$

Does it imply no solution of Schrödinger Eq in L^2 at $Z < Z_{cr}$ unlike at $Z \ge Z_{cr}$ or what ?

• (Can it be a level embedded to continuum?)

QUESTIONS:

How to find
$$Z_{cr}$$
, where $I(Z = Z_{cr}) = 0$, and Z_B ?

Is there any singularity in Z-plane of ground state energy associated with Z_{cr} , and Z_{B} ?

$$\hat{\mathcal{H}} \ = \ -\frac{1}{2} (\Delta_1 + \Delta_2) \ - \ \frac{1}{r_1} \ - \ \frac{1}{r_2} \ + \left(\frac{1}{Z}\right) \, \frac{1}{r_{12}}$$

$$\hat{E} \rightarrow \frac{E}{Z^2}$$

• Develop perturbation theory in $\lambda = 1/Z$

$$\hat{E} = \sum_{n=0}^{\infty} e_n \, \lambda^n$$

• This is the famous convergent 1/Z-expansion

$$e_0 = -1, e_1 = \frac{5}{8}$$

• All other coefficients SEEM non-rational numbers.

• As early as 1930 E. Hylleraas found next 3 coefficients (somehow wrong!)

$$e_2 = -0.15744 (67), e_3 = 0.00876 (0), e_4 = -0.00274 (089)$$

 At 1990 J.D.Baker, D.E.Freund, R.N.Hill, J.D.Morgan III, Jr calculated 401 coefficients overpassing all ~ 150 previous calculations!

The famous paper: about 200 citations, no single attempt to verify, improve or challenge for 20 years!

Keypoint: Quadruple precision! (\sim 30 figures), 476-term function They extracted the *Asymptotic* behavior from $e_{25} \div e_{401}$:

$$e_n = Z_{cr}^n n^{\beta} e^{-\alpha n^{\frac{1}{2}}} \left(1 + \frac{c_{1/2}}{n^{1/2}} + \frac{c_1}{n} + \frac{c_{3/2}}{n^{3/2}} + \frac{c_2}{n^2} + \dots \right)$$

with $\alpha = 0.272$ and $\beta = -1.94$; $e_{200} \sim 10^{-16}$ and $e_{400} \sim 10^{-25}$

Quite unique convergent expansion in physics! (Kato Theorem)

• What is radius of convergence?

$$R = 1/Z_{cr}$$

• Where is the singularity? - At real Z-axis

(W. Reinhardt conjecture)

 What is a nature of singularity? - might be smth horribly complicated...

(algebraic branch point with exp=7/6 plus essential singularity at $Z_{cr}=Z_{B}=0.911028$)

(Baker et al, '90)

1st challenge (2010):

J Zamastil, J Cizek et al , Phys Rev A 81 (2010) - some long-established conclusions are wrong(!):

$$Z_{cr} = 0.9021...$$

it differs in 2nd digit from established!

Statement: the 1990's calculation is wrong!

- asymptotics e_n at $n \to \infty$ extracted from $e_{13} \div e_{19}$ differs from Baker et al,'s one: $\alpha = 0$ and $\beta = -5/2$. Inconsistency!
- Energy

$$E(\lambda) = (\lambda - 1/Z_{cr})^{\frac{1}{2}} f_1(\lambda - 1/Z_{cr}) + f_2(\lambda - 1/Z_{cr})$$

 $f_{1,2}$ are regular at $\lambda=1/Z_{cr}$ and $f_1(0)=0$ (the so called Darboux function)

• Singularity

Branch point of the 2nd order with exponent 3/2 (!) - contrary to '90 result

but in agreement with F.H.Stillinger, 1966, 1974

However, F.H.Stillinger said more:

radius of convergence

$$R > 1/Z_{cr}$$

It may imply the existence of the level embedded to continuum at $Z < Z_{cr}$!

2nd challenge (2011):

• N Guevara and AT (Phys Rev A 84, 2011) :

Let us calculate the singularity at $Z = Z_B$ directly (assuming the Reinhardt conjecture holds: $I(Z_B) = 0$) making approximation by

$$E_{total} = -\frac{Z_B^2}{2} - 1.142552(Z - Z_B) - 0.174110(Z - Z_B)^{3/2}$$
$$- 0.770010(Z - Z_B)^2 - 0.139923(Z - Z_B)^{5/2}$$
$$+ 0.022469(Z - Z_B)^3 + 0.008730(Z - Z_B)^{7/2} \dots$$

at $Z > Z_B = 0.91085$ (Puiseux expansion),

7 s.d. reproduced at 12 points in E at $Z \in [0.95, 1.35]$

- We did **not** confirm the result by 2010 for Z_{cr} being in close agreement with '90 result $Z_{cr} = 0.911029$
- But we confirm (?) that

 Branch point of the 2nd order with exponent 3/2!
- We did **not** confirm the asymptotics by Baker et al, '90 (and large-order coeffs, even in the 1st digits)

A complete mess!

How Baker et al, '90 calculated Z_{cr} ?

Two options:

either

Making approximation of e_n ,

or,

by Solving equation $I(Z_{cr}) = 0$

That paper gives NO definite answer ...

Suspicion: quadruple precision failure or error accumulation let us check it \rightarrow

The First Observation: we do not confirm the statement from Baker et al (p.1254):

The sum of the e_n 's for n running from 0 to 401 is

-0.527751016544**266**

which at the time we did our calculations was the most accurate estimate of the energy for the ground state of H^- .

Our result

-0.527 751 016 544 **160**

differs in the last three decimal digits,

- (i) ifort q-precision real*16 (quadruple precision),
- (ii) Maple Digits=30 in Maple 13
- (iii) C Schwartz (Berkeley) multiple precision arithmetic package (but MATEMATICA)

The Second Observation:

for
$$E(Z = 1) = \sum_{n=1}^{401} e_n$$

neither Baker et al,

$$-0.527751016544$$
266

nor, our accurate sum of Baker's coeffs

coincide to Nakashima-Nakatsuji (2007) exact(!) result

$$-0.527751016544377$$
, ...

• Similar story for Z = 2!

Conclusion:

certainly, e_n beyond 12 decimal digits were calculated **unreliably/wrongly**!

-1 $e_0 =$ +5/8 $e_1 =$ -0.157 666 429 469 1**50 94** $e_2 =$ +0.008 699 031 52**7 989 8** $e_3 =$ -0.000 888 707 284 **667 8** $e_4 =$ $e_5 =$ -0.001 036 371 84**7 099 2** -0.000 612 940 52**1 924 4** $e_6 =$ -0.000 372 175 57**4 257 0** $e_7 =$ -0.000 242 877 97**6 020 2** $e_8 =$ -0.000 165 661 05**2 028 2** $e_9 =$ $e_{10} = -0.000 \ 116 \ 179 \ 203 \ 700 \ 1$ $e_{20} = -0.000\ 007\ 686\ 163\ 321\ 308$ $e_{30} = -0.000\ 001\ 011\ 388\ 064\ 240$ $e_{40} = -0.000\ 000\ 177\ 418\ 138$ $e_{50} = -0.000\ 000\ 036\ 533\ 598$

Table: First perturbation coefficients e_n found by C Schwartz (2013) with \sim 3000 terms at 60-70-digit arithmetics, modified (in bold) in comparison with ones found in Baker:1990 (30-digits, 476 terms)

Z	E (a.u.) from PT	<i>E</i> (a.u.)
1	-0.527 751 016 544 37 1	-0.527 751 016 544 377
2	-2.903 724 377 034 119	-2.903 724 377 034 119
3	-7.279 913 412 669 305	-7.279 913 412 669 305
4	-13.655 566 238 423 586	-13.655 566 238 423 586
5	-22.030 971 580 242 781	-22.030 971 580 242 781
6	-32.406 246 601 898 530	-32.406 246 601 898 530
7	-44.781 445 148 772 704	-44.781 445 148 772 704
8	-59.156 595 122 757 925	-59.156 595 122 757 925
9	-75.531 712 363 959 491	-75.531 712 363 959 491
10	-93.906 806 515 037 549	-93.906 806 515 037 549
11	-114.281 883 776 072 721	-114.281 879 (*)
12	-136.656 948 312 646 929	-136.656 944 (*)

Table: Left column: E(Z) - perturbative energies (partial sums)

Right column: Nakashima-Nakatsuji (Tokyo, 2007),

C. Schwartz (Berkeley, 2006) at (Z = 2)

(*) Thakkar-Smyth (Ontario, 1977)

Conclusion: No non-analytic terms in energy $\sim e^{-Z}$ (Kato's Theorem confirmed!)

Epilogue (about 1/Z-expansion): what to do?

We have to come back to 1990, repeat the calculations of the higher orders e_n , extract asymptotic behavior, find radius of convergence R and, possibly, singularity, (situation with e_n for 2^1S state is unsatisfactory as well)

Or,

• Is there a way to calculate asymptotics analytically? (like for anharmonic oscillators in QM (a la Bender-Wu), or in QFT for Gellmann-Low functions (a la Lipatov etc) and in stat mechanics for free energy)

• Or, to solve the spectral problem at threshold

$$\left(-\frac{1}{2}(\Delta_1+\Delta_2)-\frac{1}{r_1}-\frac{1}{r_2}+\frac{1}{2}\right)\Psi \ = \ \frac{1}{Z}\,\frac{1}{r_{12}}\Psi \quad , \quad \Psi(x)\in L^2(\mathbf{R}^6)$$

and find $\frac{1}{Z_{cr}}$... how to do it?

• Variationally (triple set with non-linear parameters, 2276 terms), $E_{var} = E(Z)$ (*PRL*, Drake et al (April, 2014)):

$$Z_{cr} = 0.91102822407725573$$

• Lagrange mesh (non-uniform lattice) (*PLA*, Olivares-Pilon and AT, Jan 2015):

12 decimals are confirmed

 Pseudospectral method (*PRA*, Grabovski and Burke, March 2015):

11 decimals are confirmed

However, Drake et al (April, 2014) predict the bound state even for $Z < Z_{cr}$ contrary to intuitive statement $(< r_1 > \sim 1a.u., < r_2 > \sim 5a.u.)$.

Hence, the level embedded to continuum!!

Is it an artifact of variational study by Drake et al?

• At Z = 0.91 the ground state energy (September 2014):

Olivares-Pilon and AT, -0.41379921124 a.u. (Lagrange mesh) Drake et al, -0.413799211244 a.u. (variational)

$$R > \frac{1}{Z_{cr}}$$

in agreement with Stillinger!

We are back to the question by E. Hylleraas: How to find $R(=\frac{1}{Z_B})$?

F.H. Stillinger (1966):

Take Hylleraas-Eckart-Chandrasekhar trial function

$$\Psi_{HEC}(\textit{r}_{1},\textit{r}_{2}) = \Psi_{0}(\textit{r}_{1},\textit{r}_{2}) + \Psi_{0}(\textit{r}_{2},\textit{r}_{1}) \;,\; \Psi_{0}(\textit{r}_{1},\textit{r}_{2}) = e^{-\alpha_{1}\textit{r}_{1} - \alpha_{2}\textit{r}_{2}} \;,\; \alpha_{1} \neq \alpha_{2}$$

- There exist both $Z_{cr} (= 0.9538)$ and $Z_{B} (= 0.9276)$
- There exist two different expansions for variational energy:

$$E(Z) = -\frac{Z_{cr}^2}{2} + a_1(Z - Z_{cr}) + a_2(Z - Z_{cr})^2 + a_3(Z - Z_{cr})^3 + \dots$$

which is the Taylor expansion, and

$$E(Z) = b_0 + b_1(Z - Z_B) + c_1(Z - Z_B)^{\frac{3}{2}} + b_2(Z - Z_B)^2 + c_2(Z - Z_B)^{\frac{5}{2}} + \dots$$

which is the Puiseux expansion

Four different choices for trial function Ψ_0 lead to the same expansions!

$$\Psi = \Psi_{HEC}(r_1, r_2)(1 + cr_{12})e^{-\beta r_{12}}$$

(B Carballo, talk on June 2014)

The more accurate

$$Z_{cr} = 0.9195$$
 and $Z_B = 0.8684$

parameters vs Z behave like in catastrophe theory (swallow tail)!

Exact energies are reproduced with 1-2-3 decimal digits for $Z \in [0.91-2.]$ (!)

Accurate Calculations:

Z	<i>E</i> (a.u.)	Lagrange mesh
1.00	-0.527 751 016 544 377 ^a	-0.527 751 016 544 38
0.95	-0.462 124 684 390 ^b	-0.462 124 699 683 8
0.94	_	-0.449 669 043 929 7
0.93	_	-0.437 451 308 772 3
0.92	_	-0.425 485 281 676
0.912	_	-0.416 111 395 53
Z_{cr}^{EBMD}	-0.414 986 212 532 679 ^c	-0.414 986 212 53
0.91	-0.413799211244 ^c	-0.41379921124

Lagrange mesh for Ground state energy *E* for a two-electron system vs Z compared with Nakashima-Nakatsuji: 2007 a,

Guevara-AT: 2011 (Korobov basis) b,

I. Approximation (ground state):

$$E_B(Z) = -0.407924347 - 1.12347455 (Z - Z_B) - 0.19778459 (Z - Z_B)^{\frac{3}{2}}$$

$$-0.7528418 (Z-Z_B)^2 - 0.1082589 (Z-Z_B)^{\frac{5}{2}} - 0.014135 (Z-Z_B)^3$$

$$+0.00854 (Z-Z_B)^{\frac{7}{2}} + 0.00483 (Z-Z_B)^4 - 0.000056 (Z-Z_B)^{\frac{9}{2}}$$

$$Z_B(1^1S) = 0.90485374$$

close to 0.9023 by Zamastil et al, 2010

Reproduces 8-7-6 decimals for $Z \in [0.91 \; , \; 2.0]$,

$$E_{approx}(Z=2) = -2.903724$$
, $E_{exact}(Z=2) = -2.903724$

II. Approximation (ground state):

$$E_c(\lambda) = -\frac{1}{2} - 0.2451882222 (\lambda - \lambda_{cr}) - 0.7833241391 (\lambda - \lambda_{cr})^2 + \dots$$

where $\lambda=1/Z$ at $Z\in[0.905\;,\;0.91\;,\;Z_{cr}^{\textit{EBMD}}\;,\;0.912]$ in 11-12 decimals.

Comparing with coeff in front of linear term by Drake et al. (April, 2014) using virial theorem

$$b_1 = -0.2451890639$$

No singularity ...

Ground state ${}^{1}S$ energy:

• Analytic continuation around singularity (ground state \rightarrow excited state):

$$E_B(Z) = -0.407924347 - 1.12347455 (Z - Z_B) + 0.19778459 (Z - Z_B)^{\frac{3}{2}}$$

$$-0.7528418 (Z-Z_B)^2 + 0.1082589 (Z-Z_B)^{\frac{5}{2}} - 0.014135 (Z-Z_B)^3$$

$$-0.00854 (Z - Z_B)^{\frac{7}{2}} + 0.00483 (Z - Z_B)^4 + 0.000056 (Z - Z_B)^{\frac{9}{2}}$$

$$Z_B(^1S) = 0.90485374$$
 $Z_{cr}^{excited} = 0.912003$

$$Z_{cr}^{excited} = 0.912003$$

Excited state:

$$E_B(Z=1) = -0.515541 \ a.u.$$

 $Z = 1.0 \; , \; E = -0.527445881114 \; , \; \mbox{Fit H- 2nd branch} = -0.5153038 \; \label{eq:Z}$

$$E_B(Z=2) = -2.201 \text{ a.u.}$$

What state can it be?

Likely, spin-singlet

$$(1s2s) 2^1 S$$

$$E_{exact}(Z = 2) = -2.175229$$
 a.u. (Drake et al)

(almost) Conclusion:

• based on analytic continuation of energy around $Z_B(1^1S)$ we predict the existence of the excited state of negative hydrogen ion H⁻ of the same symmetry as the ground state at

$$E_{excited}(Z=1) = -0.515541 \ a.u.$$

Transition energy:

$$\Delta E = 0.01221 \ a.u.$$

But ... what about its wavefunction? – No single method leads (so far) to normalizable eigenfunction of an excited state at Z=1! Can it be $(1s2s) 2^1 S$?? – **No!** - but what?

• Expanding $\hat{E} = \frac{E_B}{Z^2}$ in powers of λ we coincide with Baker et al coeffs in two significant decimals for $e_{10,20,50,100}$!! (consistency check)

$(1s2s) 2^1 S$ state

Z	E (a.u.)	Lagrange mesh
2.	-2.145 974 046 054	-2.145 974 046 054 4
1.01	-0.510 092 281 314	-0.510 092 281 314
1.005	-0.505 023 856 993	-0.505 023 856 99
1.002	-0.502 003 917	-0.502 000
1.001	-0.501 000 988	-0.501 001

(1s2s) 2^1S state energy E for (Z,e,e) in two different methods: Karr-Hilico (left column, $\sim 10^6$ configurations in d.p.) Lagrange mesh (right column, $\sim 90 \times 90 \times 20$ in d.p.)

Error accumulations?

For $(1s2s)2^1S$ Approximation:

$$E_B(Z) = -0.492672 - 0.976927 (Z - Z_B) - 0.126843 (Z - Z_B)^{\frac{3}{2}}$$

$$-0.431150 (Z - Z_B)^2 + 0.117963 (Z - Z_B)^{\frac{5}{2}} - 0.172930 (Z - Z_B)^3$$

$$-0.073129~(Z-Z_B)^{\frac{7}{2}}-0.007198~(Z-Z_B)^4+0.033670~(Z-Z_B)^{\frac{9}{2}}$$
 Reproduces 7-6 decimals for $Z\in[1.01~,~2.0]$,

$$E_B(Z=2) = -2.145974$$
, $E_{exact}(Z=2) = -2.145974$

$$Z_B((1s2s)2^1S) = 0.992606$$

Hence, $(1s2s)2^1S$ excited state is **NOT** 2^1S state at

$$Z_B(1^1S) < Z < Z_B(2^1S)$$

or, in concrete, at

What this excited state is? (if exists) \Leftrightarrow A meaning of analytic continuation in ZOpen question: to localize the level crossing 1S-2S(Landau-Zener singularities)

- it may shed light on the situation (no single attempt known)

Finite masses < ---> full geometry

Three Coulomb Charges:

$$\bullet (Z, M) + \bullet (z, m) + \bullet (z, m)$$

- (I) Helium-like $(H^-, He, Li^+ \dots, one-center)$: z=1 and $M \to \infty$
- (II) H_2^+ -like $(H_2^+, D_2^+, T_2^+ \dots, two-center)$: Z=1 and $m\to\infty$
- (III) Positronium-like $(Ps^{\pm}, Mu^{\pm}, Pr^{\pm}...)$: z = 1 and M = m

$$(z_1, z_2, e)$$

Two fixed charged (fixed) centers at distance R and one electron

$$z_1 = z_2 = 1$$
 \Rightarrow Molecular Hydrogen ion H_2^+ (stable)
 $z_1 = z_2 = 2$ \Rightarrow Molecular Helium ion He_2^{3+}
(it does not exist, no bound states)

$$\mathcal{H}(R) = -\frac{1}{2}\Delta^{(3)} - \frac{z_1}{r_1} - \frac{z_2}{r_2} + \frac{z_1z_2}{R}$$

 Variables are separated in prolate spheroidal (elliptic) coordinates

$$\xi = \frac{r_1 + r_2}{R} \; , \; \eta = \frac{r_1 - r_2}{R} \; , \; \varphi$$

(the perimetric coordinates in Hylleraas notation $(\varphi \rightarrow r_{12} = R)$!)

It has the property of complete integrability

$$I_1 = L_{\varphi} , I_2 = L_1 L_2 + 2R(z_1 \cos \theta_1 + z_2 \cos \theta_2)$$

- ♦ Classical case: → Euler (implicitly), Erikson-Hill (1949, explicitly)
- lack Quantum case: $L_1L_2 \rightarrow \frac{1}{2}\{\mathcal{L}_1\mathcal{L}_2\}_+$ Erikson-Hill (1949)

Lowest (ground state) eigenfunctions: one of positive and one of negative parity, $1s\sigma_g$ (0,0,0,+) and $2p\sigma_u$ (0,0,0,-)

$$\Psi_{0,0,0}^{(\pm)} = \frac{1}{\left(\gamma + \xi\right)^{1 - \frac{R}{\rho}}} e^{-\xi \frac{\alpha + \rho \xi}{\gamma + \xi}}$$

$$\frac{1}{(1+b_2\eta^2+b_3\eta^4)^{1/4}} \left[\begin{array}{c} \cosh \\ \sinh \end{array} \left(\eta \frac{a_1+pa_2\eta^2+pb_3\eta^4}{1+b_2\eta^2+b_3\eta^4} \right) \right]$$

Six free parameters α, γ and $a_{1,2}, b_{2,3}$ plus "parameter" $p = \sqrt{-E'R^2/4}$.

Energy E(R) for $R \in [1,50] o 10$ - 11 decimals : variationally and in Lagrange mesh

(Olivares-Pilon and AT, 2011)

For
$$z_1 = z_2 = z$$
 (H Medel and A.T., 2011)

• The Critical point

$$z_B \approx 1.439$$

 \blacklozenge the ground state potential curve $E = E(R; z = z_B)$ has no minimum but saddle point at $R_{eq} = 2.985$ a.u.

(maximum disappears, it implies coincidence of the minimum and maximum, it happens at a finite distance)

- \blacklozenge $0 \le z \le z_B$ the system is bound, (the 2nd critical point is at $z_{cr} = 0$, the potential is zero)
- \blacklozenge for $z \ge z_B$ the system is unbound

• The Critical point

$$z_{cr} \approx 1.237$$

♦ Stability:

 \diamond if $z \in (1.237, 1.439)$ the system (z, z, e) is metastable

$$(z, z, e) \rightarrow (z, e) + z$$

 $\Rightarrow E_{(z,z,e)}(R = R_{eq}(z)) > E_{(z,e)}$

 \diamond if z < 1.237 it is stable

lacktriangle Behavior (fit) at $z = z_B = 1.439$:

$$E(z; R = R_{eq}(z)) = -1.8072 + 1.5538 (z_B - z) - 0.5719 (z_B - z)^{3/2} +$$
 $+0.1129 (z_B - z)^2 + 0.7777 (z_B - z)^{5/2} - 0.4086 (z_B - z)^3 + \dots$
at $z \to z_B^-$

Branch point of the 2nd order(!) with exponent 3/2

• No indication to singularity at $z = z_{cr} = 1.237$

$$E(z; R = R_{eq}(z)) = 1.5292 + 1.341(1.237 - z) + 0.08(1.237 - z)^2 \dots$$

Two fundamental plots are built:

• Behavior $Z_{cr} = Z_{cr}(\mu \equiv \frac{m}{M})$

$$Z_{cr}(0) = 0.91103$$
 , $Z_{cr}(1) = 0.92180$, $Z_{cr}(\mu_t) = 0.81182$ $Z_{cr}(\infty) = 0.80862$

at $\mu \in [0,1]$ (Moini & Drake, 2014), $\mu_t = 5496.92158$ (triton). It is seen no singularity at $Z = Z_{cr}$ for fixed $\frac{m}{M}$. Can it be confirmed?

• Behavior $Z_B = Z_B(\mu)$

$$Z_B(0) = 0.90485$$
, $Z_B(1) = 0.90886$, $Z_B(\mu_t) = 0.69235$
 $Z_B(\infty) = 0.69267$

Singularity in $Z=Z_B$ at fixed μ of square-root type with exponent 3/2 (!)

It was studied the critical charge Z_B for n centers and k electron problems (nZ, ke):

- one-center case (Z, 2e), (Z, 3e)
- two-center case (2Z, e), (2Z, 2e)
- three-center case (3Z, e), (3Z, 2e)
- ▶ and many center, one-electron case (4Z, e), (5Z, e), (6Z, e)

Everywhere square-root branch point with exponent 3/2 occurred as well as no singularity at Z_{cr} associated with dissociation.

Conjecture: for any many-body Coulomb system (nZ, ke) the critical charge Z_B exists and is associated with square-root branch point with exponent 3/2

(it is a property of Coulomb system)

Conclusions

- We are unable to interpolate energies E(Z) better than 6-7s.d. − Why? All our qualitative conclusions are valid with 6-7.s.d. - what is beyond?
- ▶ We solved the Schrodinger eq. wrongly at $Z < Z_{cr}$; there must be $Im E(Z) \neq 0$ the system can decay
- ▶ (Wild) Guess: E(Z) = A(Z) + B(Z) such that

$$\left|\frac{B(Z)}{A(Z)}\right| \lesssim 10^{-(6\div7)}$$

where A(Z) is our interpolation(s). It is like in a separation of variables.

What do we know about B(Z)?

J-P Karr (Paris, 2015) calculated (in complex rotation method) imaginary part of E(Z) at $Z < Z_{cr}$:

$$B(Z) \approx i \ a|Z - Z_{cr}|^{1/2} \ e^{-\frac{b}{|Z - Z_{cr}|}}, \ b > 0$$

the interpolation. It signals to essential singularity at $Z = Z_{cr}$:

- (i) At $Z>Z_{cr}$ it gives a contribution to 8-7-6 decimal digits in energy in $Z\in [Z_{cr},1]$
- (ii) In 1/Z-expansion in gives a contribution to 3s.d. at coeffs e_{10-100} .

Can the guess be justified? – It is NOT a numerical question.

