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Reduced 3-body problem:

(Ze, M) and two identical (—e, m)

2
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Ve coco0— = — = —
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Kepler problem
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Coulomb problem



Two Particular Cases:

One-center case M = oo

(Helium-like atom)

Two-center case m = o0

(H3 -like molecular ion)



The Hamiltonian
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with r e RR®R® —  Centre-of-Mass can be separated out

The Schrodinger equation

H =

HV(x) = EV(x) , W(x)c LR
not always has solutions.
e Critical charge Zg is a value of Z which separates the

domains " existence (Z > Zg)/non-existence (Z < Zg)” of
solutions in the Hilbert space

e /.. - The ionization energy is zero, the system can decay
at Z < Z,

(Zp,e,e) = (2Zp,e) + e
Are these Zg and Z,, related?



EXAMPLE: the Hydrogen atom (M = c0)

Ground state energy

Z2
2

is entire function in Z (no singularities), but

E =

Zcr:O

(potential is equal to zero)
No analytic continuation of Ey to negative Z !

Vg = e %, Z>0



Rigorous mathematical results:

» Energy E(Z)/Z? is analytic around Z = oo (T. Kato, 1951)
it is given by convergent Taylor expansion - what is radius of
convergence?

» At Z = 2 there are infinitely-many bound states but at Z =1
- finitely-many (D. Yafaev, 1972)
there must be Z* where the transition happened -
infinitely-many bound states disappear - how it happened?

» Ground state W(x; Z = Z.,) is normalizable (B. Simon, 1977)



Methods used to solve:

» Variational (linear and recently, nonlinear)

» Non-uniform lattice - Lagrange mesh (D Baye , H Olivares)
Physics: integer Z =1,2,3,. ..

» Energies (... Nakashima-Nakatsuji, 2007)
» Z. (...Drake et al, 2014, H Olivares & AT 2014)
» Transition amplitudes ( D Baye, ..., H Olivares 2014)



The two-electron ion sequence (helium isoelectronic
sequence) (M = o)
H = —1(A1+A2) £ £ + 2z
2 n r 2
at Z>2 = 2e-ion (infinitely-many bound states)
at Z=2 = Helium atom (infinitely-many bound states)
at Z=1 = Negative Hydrogen ion (single bound state)

Critical charge

Zo ~ 091 ...

the ionization energy is zero, the system can decay at Z < Z,
(Zp, e e) = (Zp,e) + e

Does it imply no solution of Schrédinger Eq in L2 at Z < Z,
unlike at Z > Z., or what ?
e (Can it be a level embedded to continuum?)



QUESTIONS:

How to find Z.,, where I(Z = Z,) =0, and Zg?

Is there any singularity in Z-plane of ground state energy
associated with Z.,, and Zg?



N 1 1 1 1
H = ——(A1+A2) — f_l — r—2 +<?> 5
~ E
E- 7

e Develop perturbation theory in A=1/7

o
E = Zen A
n=0

e This is the famous convergent 1/Z-expansion

o All other coefficients SEEM non-rational numbers.



e As early as 1930 E. Hylleraas found next 3 coefficients (somehow
wrong!)

e, = —0.15744 (67), e3 = 0.00876 (0), e, = —0.00274 (089)

e At 1990 J.D.Baker, D.E.Freund, R.N.Hill, J.D.Morgan IlIl, Jr
calculated 401 coefficients overpassing all ~ 150 previous
calculations!

The famous paper: about 200 citations, no single attempt to
verify, improve or challenge for 20 years!

Keypoint: Quadruple precision! (~30 figures), 476-term function
They extracted the Asymptotic behavior from exs + e401:

C1/2 a C3/2 (o)

1
e = ZhnPe (1 tap t o, vttt

with @ = 0.272 and 8 = —1.94; exgg ~ 10710 and esgp ~ 10°2°
D



Quite unique convergent expansion in physics!  (Kato
Theorem)

e What is radius of convergence?

R = 1/Z,

e Where is the singularity? - At real Z-axis
(W. Reinhardt conjecture)

e What is a nature of singularity? -  might be smth horribly
complicated...

(algebraic branch point with exp=7/6 plus essential singularity at
Z, = Zg = 0.911028)

(Baker et al, '90)
I



1st challenge (2010):
J Zamastil, J Cizek et al , Phys Rev A 81 (2010) - some
long-established conclusions are wrong(!):

Z, = 0.9021...

it differs in 2nd digit from established!
Statement: the 1990's calculation is wrong!
e asymptotics e, at n — oo extracted from e;3 + eyg differs from
Baker et al,'s one: « =0 and = —5/2.  Inconsistency!
e Energy

EQ) = (A= 1/Ze)2 (A = 1/Ze) + (A — 1/Zcr)

fi o are regular at A = 1/Z., and f(0) = 0 (the so called Darboux
function)
e Singularity
Branch point of the 2nd order with exponent 3/2 (!) - contrary to
‘90 result

but in agreement with F.H.Stillinger, 1966, 1974



However, F.H.Stillinger said more:

radius of convergence

R > 1/Z,

It may imply the existence of the level embedded to continuum
at Z < Z,,!



2nd challenge (2011):
e N Guevara and AT  (Phys Rev A 84, 2011) :
Let us calculate the singularity at Z = Zg directly (assuming the
Reinhardt conjecture holds: 1(Zg) = 0) making approximation by
Z2
Erota) = —75 — 1.142552(Z — Zg) — 0.174110(Z — Zg)>/?

— 0.770010(Z — Zg)? — 0.139923(Z — Zg)®/?
+ 0.022469(Z — Zg)* + 0.008730(Z — Zg)"/?...

at Z > Zg = 0.91085 (Puiseux expansion) ,

7 s.d. reproduced at 12 points in E at Z € [0.95, 1.35]
e We did not confirm the result by 2010 for Z., being
in close agreement with '90 result Z.,, = 0.911029

e But we confirm (?) that

Branch point of the 2nd order with exponent 3/2!
e We did not confirm the asymptotics by Baker et al, '90 (and
large-order coeffs, even in the 1st digits)



A complete mess!
How Baker et al, '90 calculated Z,, 7
Two options:

either
Making approximation of e,

or,

by Solving equation /(Z,) =0

That paper gives NO definite answer ...



Suspicion: quadruple precision failure or error accumulation
Let us check it —

The First Observation: we do not confirm the statement from
Baker et al (p.1254):

The sum of the e,’s for n running from 0 to 401 is

—0.527751016 544 266

which at the time we did our calculations was the most accurate
estimate of the energy for the ground state of H™.

Our result

—0.527751016 544160

differs in the last three decimal digits,

(i) ifort g-precision real*16 (quadruple precision),

(i) Maple Digits=30 in Maple 13

(iii) C Schwartz (Berkeley) multiple precision arithmetic package
(but MATEMATICA)



The Second Observation:
for E(Z=1) =3 e,

neither Baker et al,

—0.527751016 544 266

nor, our accurate sum of Baker's coeffs

—0.527751016 544160

coincide to Nakashima-Nakatsuji (2007) exact(!) result

—0.527751016 544 377 , ...

e Similar story for Z =21
Conclusion:

certainly, e, beyond 12 decimal digits were calculated
unreliably /wrongly!



€ —
€ =
€ =
€3 =
€4 =
€5 =
€6
e =
g =

€ =
€10 =
€20 =
€30 =
€40 =
€50 =

—1
+5/8

—0.157 666 429 469 150 94
+0.008 699 031 527 989 8
—0.000 888 707 284 667 8
—0.001 036 371 847 099 2
—0.000 612 940 521 924 4
—0.000 372 175 574 257 0
—0.000 242 877 976 020 2
—0.000 165 661 052 028 2
—0.000 116 179 203 700 1
—0.000 007 686 163 321 308
—0.000 001 011 388 064 240
—0.000 000 177 418 138
—0.000 000 036 533 598

Table: First perturbation coefficients e, found by C Schwartz (2013) with
~ 3000 terms at 60-70-digit arithmetics, modified (in bold) in
comparison with ones found in Baker:1990 (30-digits, 476 terms)



E (a.u.) from PT

E (a.u.)

© 0 ~NOG A WN RN

10
11
12

-0.527 751 016 544 371
-2.903 724 377 034 119
-7.279 913 412 669 305
-13.655 566 238 423 586
-22.030 971 580 242 781
-32.406 246 601 898 530
-44.781 445 148 772 704
-59.156 595 122 757 925
-75.531 712 363 959 491
-03.906 806 515 037 549
-114.281 883 776 072 721
-136.656 948 312 646 929

~0.527 751 016 544 377
-2.903 724 377 034 119
-7.279 913 412 669 305

-13.655 566 238 423 586

-22.030 971 580 242 781

-32.406 246 601 898 530

-44.781 445 148 772 704

-59.156 595 122 757 925

-75.531 712 363 959 491

-93.906 806 515 037 549

-114.281 879 (x)
-136.656 944 (x)

Table: Left column: E(Z) - perturbative energies (partial sums)
Right column: Nakashima-Nakatsuji (Tokyo, 2007) ,

C. Schwartz (Berkeley, 2006) at (Z = 2)

(¥) Thakkar-Smyth (Ontario, 1977)

Conclusion: No non-analytic terms in energy ~ e~

(Kato's Theorem confirmed!)

V4



Epilogue (about 1/Z-expansion): what to do?

We have to come back to 1990, repeat the calculations of the
higher orders e,, extract asymptotic behavior, find radius of
convergence R and, possibly, singularity,

(situation with e, for 21S state is unsatisfactory as well)

Or,

e s there a way to calculate asymptotics analytically?

(like for anharmonic oscillators in QM (a /a Bender-Wu), or in
QFT for Gellmann-Low functions (a /a Lipatov etc) and in stat
mechanics for free energy)



e Or, to solve the spectral problem at threshold

1 1 1 1 11
— (A A)) — — — 2 )Y = = v v L%(R®
(2( 1+ 2) M I’2+2> ZI’12 ’ (X)€ ( )

and find Z%r ... how to do it?

e Variationally (triple set with non-linear parameters, 2276 terms),
E,or = E(Z) (PRL, Drake et al (April, 2014)):

Z, = 0.91102822407725573

e Lagrange mesh (non-uniform lattice) (PLA, Olivares-Pilon and
AT, Jan 2015):

12 decimals are confirmed
e Pseudospectral method (PRA, Grabovski and Burke, March
2015):

11 decimals are confirmed



However, Drake et al (April, 2014) predict the bound state even for
Z < Z. contrary to intuitive statement

(< n>~1lau., <rn>~bau.).

Hence, the level embedded to continuum!!

Is it an artifact of variational study by Drake et al?

e At Z = 0.91 the ground state energy (September 2014):

Olivares-Pilon and AT, —0.41379921124 a.u. (Lagrange mesh)
Drake et al, —0.413799211244 a.u.  (variational)

R> 2
in agreement with Stillinger !

We are back to the question by E. Hylleraas:
How to find R(= %B)?



F.H. Stillinger (1966):

Take Hylleraas-Eckart-Chandrasekhar trial function

Vyec(r, ) = Vo(r, n)+WVo(r,n), Vo(r,n) =e 17922 ay # a

e There exist both Z.(= 0.9538) and Zg(= 0.9276)
e There exist two different expansions for variational energy:

ZZ
E(Z) = - +a(Z-Za)+2(Z- Zo )+ a3(Z -2 + ...

which is the Taylor expansion, and

E(Z) = bot+bi(Z—Z)+c1(Z—Z5)2+bo(Z—Z8)2+ca(Z—Z5)3+. ..

which is the Puiseux expansion



Four different choices for trial function Vg lead to the same
expansions!

Vv = \Uch(rl, I’2)(1 + cr12)e_5’12
(B Carballo, talk on June 2014)

The more accurate

Zoy =0.9195 and Zp = 0.8684

parameters vs Z behave like in catastrophe theory (swallow tail)!

Exact energies are reproduced with 1-2-3 decimal digits for
Z €[0.91—2] (1)



Accurate Calculations:

Z E (a.u.) Lagrange mesh

1.00 -0.527 751 016 544 3772 -0.527 751 016 544 38
0.95 -0.462 124 684 390 © -0.462 124 699 683 8
0.94 - -0.449 669 043 929 7
0.93 - -0.437 451 308 772 3
0.92 - -0.425 485 281 676
0.912 - -0.416 111 395 53
ZEBMD -0.414 986 212 532 679 © -0.414 986 212 53
0.91 -0.413799211244 © -0.41379921124

Lagrange mesh for Ground state energy E for a two-electron
system vs Z compared with
Nakashima-Nakatsuji: 2007 ¢,

Guevara-AT: 2011 (Korobov basis) 2,

Drake et al.: 2014 €



|. Approximation (ground state):

Nlw

Eg(Z) = —0.407924347—1.12347455 (Z—Zg)—0.19778459 (Z—Zg)
—0.7528418 (Z — Zg)?—0.1082589 (Z — Zg)? —0.014135 (Z— Zg)?

z 4 9
+0.00854 (Z — Zg)? + 0.00483 (Z — Zg)* — 0.000056 (Z — Zg)>

Zp(1'S) = 0.90485374 close to 0.9023 by Zamastil et al, 2010

Reproduces 8-7-6 decimals for Z € [0.91 , 2.0] ,

Eapprox(Z = 2) = —2.903724 | Epvact(Z = 2) = —2.903724
I



II. Approximation (ground state):

1
Ec(A) = —5 — 0.2451882222 (A~)c,) — 0.7833241391 A=Ae)® + ...

where A\ =1/Z at Z € [0.905 , 0.91 , ZEBMP ' (0.912] in 11-12
decimals.

Comparing with coeff in front of linear term by Drake et al. (April,
2014) using virial theorem

b; = —0.2451890639

No singularity ...



Ground state 1S energy:




e Analytic continuation around singularity (ground state — excited
state):

Es(Z) = —0.407924347—1.12347455 (Z—Z5)~+0.19778459 (Z—Zg)?

—0.7528418 (Z — Z)?+0.1082589 (Z— Zg)? —0.014135 (Z — Zg)?

—0.00854 (Z — Zg)? + 0.00483 (Z — Zg)* + 0.000056 (Z — Zg)?

Zg(1S) = 0.90485374 | z&<ited — 0.912003




Excited state:

Eg(Z=1) = —0.515541 a.u.

Z =10, E =—-0.527445881114 , Fit H- 2nd branch = —0.5153038

Eg(Z =2) = —2.201 a.u.
What state can it be?
Likely, spin-singlet
(1s2s) 2'S

Eexact(Z =2) = —2.175229 a.u. (Drake et al)



(almost) Conclusion:

e based on analytic continuation of energy around Zg(11S) we
predict the existence of the excited state of negative hydrogen ion
H™ of the same symmetry as the ground state at

Eexcited(Z =1) = —0.515541 a.u.

Transition energy:
AE = 0.01221 a.u.

But ... what about its wavefunction? — No single method leads (so
far) to normalizable eigenfunction of an excited state at Z =1!

Can it be (1s25)2'S 7?7 — No! - but what?

e Expanding E = % in powers of A\ we coincide with Baker et al
coeffs in two significant decimals for e10.20,50,100 !! (consistency
check)



(1s25) 2'S state

V4 E (a.u.) Lagrange mesh

2. -2.145 974 046 054 -2.145 974 046 054 4
1.01 -0.510 092 281 314 -0.510 092 281 314
1.005 | -0.505 023 856 993 | -0.505 023 856 99
1.002 | -0.502 003 917 -0.502 000

1.001 | -0.501 000 988 -0.501 001

(1s25) 21S state energy E for (Z, e, e) in two different methods:
Karr-Hilico (left column, ~ 10° configurations in d.p.)
Lagrange mesh (right column,~ 90x90x20 in d.p.)

Error accumulations?



For (1s25)2!S
Approximation:

Eg(Z) = —0.492672 — 0.976927 (Z — Zg) — 0.126843 (Z — Zg)?
—0.431150 (Z — Zg)?+0.117963 (Z — Zg)? — 0.172930 (Z — Zg)?

z 4 9
—0.073129 (Z — Zg)2 —0.007198 (Z — Zg)" +0.033670 (Z — Zg)>
Reproduces 7-6 decimals for Z € [1.01 , 2.0] ,

Eg(Z =2) = —2.145974 | Eeoet(Z = 2) = —2.145974

Zp((1s25)2'S) = 0.992606




Hence, (152s)2'S excited state is NOT 2S state at

Zg(1'S) < Z < Zp(2'9)

or, in concrete, at

0.904854 < Z < 0.992606

What this excited state is? (if exists) < A meaning of analytic
continuation in Z
Open question: to localize the level crossing 1S — 2S5
(Landau-Zener singularities)

- it may shed light on the situation
(no single attempt known)



Finite masses < — — — > full geometry

Three Coulomb Charges:

o (Z,M) + eo(z,m) + eo(z,m)

(1) Helium-like (H—, He, Li* ..., one — center) : z=1and
M — oo

(1) H3-like (Hy, DS, T,F ..., two — center) : Z =1 and
m — 0o

(111) Positronium-like (Ps™, Mu™, Prt .. .): z=1and

M = m



(Z17 77, e)

Two fixed charged (fixed) centers at distance R and one electron

@

z1=2z =1 = Molecular Hydrogen ion HJ (stable)

z1=2 =2 = Molecular Helium ion Hngr
(it does not exist, no bound states)



» Variables are separated in prolate spheroidal (elliptic)
coordinates
n—+rnr n—n
f: R y = R y P
(the perimetric coordinates in Hylleraas notation
(p=>rn2=R)1)
> It has the property of complete integrability

h =Ly, b= LiLy+2R(zcos b + zxcos b>)

¢ Classical case: — Euler (implicitly), Erikson-Hill (1949,
explicitly)

¢ Quantum case: Lily — 3{L1Lo}4

Erikson-Hill (1949)



Lowest (ground state) eigenfunctions: one of positive and one of
negative parity, 1so, (0,0,0,+) and 2po, (0,0,0,—)

+ 1 _gatpg
Voo = (1) et
1 cosh a1 + paxn? + pban*
(14 bon? + ban*)1/4 | sinh 1+ bon? + ban*

Six free parameters a,«y and ay 2, by 3 plus " parameter”

p=+/—E'R%/a.

Energy E(R) for R € [1,50] — 10 - 11 decimals : variationally and
in Lagrange mesh

(Olivares-Pilon and AT, 2011)



For z; = zo = z (H Medel and A.T., 2011)

e The Critical point

zp ~ 1.439

¢ the ground state potential curve E = E(R; z = zg) has no
minimum but saddle point at Req = 2.985 a.u.

(maximum disappears, it implies coincidence of the minimum and
maximum, it happens at a finite distance)

¢ 0 < z < zg the system is bound,
(the 2nd critical point is at z,, = 0, the potential is zero)

¢ for z > zg the system is unbound



e The Critical point

Zo ~ 1.237
¢ Stability:
o if z € (1.237,1.439) the system (z,z, e) is metastable
(z,2,€) > (z,€) +z

= E(z,0,6)(R = Req(2)) > E(z,)

o if z < 1.237 it is stable



Z;": Energy (Z=1.400)
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Z;": Energy (Z=1.439)
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Z;": Energy (Z=1.480)
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4 Behavior (fit) at z = zg = 1.439:
E(z; R = Reg(2)) = —1.8072+1.5538 (z5—z)—0.5719 (z5—z)%/% +

10.1129 (zg — 2)? 4 0.7777 (25 — 2)%/%> — 0.4086 (z5 — z)% + ...

atz—>zB

Branch point of the 2nd order(!) with exponent 3/2

4 No indication to singularity at z = z.,, = 1.237

E(z; R = Reg(z)) = 1.5292+1.341(1.237—2)+0.08(1.237—2)? ...



Two fundamental plots are built:
e Behavior Z., = Z (1= 15)
Z,(0) = 0.91103, Z.,(1) = 0.92180 , Z.(unt) = 0.81182

Ze(00) = 0.80862

at p € [0,1] (Moini & Drake, 2014), p: = 5496.92158 (triton). It
is seen no singularity at Z = Z,, for fixed ﬁ Can it be confirmed?

e Behavior Zg = Zp(p)

Z5(0) = 0.90485 , Zg(1) = 0.90886 , Zg(u:) = 0.69235

Zg(c0) = 0.69267

Singularity in Z = Zg at fixed p of square-root type with exponent

3/2.(Y)
I
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It was studied the critical charge Zg for n centers and k electron
problems (nZ, ke):
> one-center case
(Z,2e), (Z,3e)
> two-center case
(2Z,e) , (2Z,2¢)
> three-center case
(3Z,¢e) , (3Z,2¢)
» and many center, one-electron case
(4Z,¢e) , (5Z,e), (6Z,¢)

Everywhere square-root branch point with exponent 3/2 occurred
as well as no singularity at Z., associated with dissociation.

Conjecture: for any many-body Coulomb system
(nZ, ke) the critical charge Zg exists and is associated
with square-root branch point with exponent 3/2

(it is a property of Coulomb system)



Conclusions

We are unable to interpolate energies E(Z) better than
6-7s.d. — Why? All our qualitative conclusions are valid with
6-7.s.d. - what is beyond?

We solved the Schrodinger eq. wrongly at Z < Z,; there
must be ImE(Z) # 0 — the system can decay
(Wild) Guess: E(Z) = A(Z) + B(Z) such that

B(Z2) (67
AZ )\<10

where A(Z) is our interpolation(s). It is like in a separation of
variables.
What do we know about B(Z)?



J-P Karr (Paris, 2015) calculated (in complex rotation method)
imaginary part of E(Z) at Z < Z:

b
B(Z) = ialZ—2Z,|"? e Tzl | b>0

the interpolation. It signals to essential singularity at Z = Z,:
(i) At Z > Z,, it gives a contribution to 8-7-6 decimal digits in
energy in Z € [Z, 1]

(i) In 1/Z-expansion in gives a contribution to 3s.d. at coeffs
€10-100-

Can the guess be justified? — It is NOT a numerical question.



