
General Introduction to

Parallel Computing

Rezaul Chowdhury
Department of Computer Science

Stony Brook University

Why Parallelism?

Moore’s Law

Source: Wikipedia

Unicore Performance

Source: Jeff Preshing, 2012, http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

Unicore Performance Has Hit a Wall!

Some Reasons

― Lack of additional ILP

(Instruction Level Hidden Parallelism)

― High power density

― Manufacturing issues

― Physical limits

― Memory speed

Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism?

― Multiple simultaneous instructions

― Instruction Pipelining

― Out-of-order instructions

― Speculative execution

― Branch prediction

― Register renaming, etc.

“Everything that can be invented has been invented.”

— Charles H. Duell

Commissioner, U.S. patent office, 1899

Unicore Performance: High Power Density
― Dynamic power, Pd  V 2 f C

― V = supply voltage

― f = clock frequency

― C = capacitance

― But V  f

― Thus Pd  f 3

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: Manufacturing Issues

― Frequency, f  1 / s

― s = feature size (transistor dimension)

― Transistors / unit area  1 / s2

― Typically, die size  1 / s

― So, what happens if feature size goes down by a factor of x?

― Raw computing power goes up by a factor of x4 !

― Typically most programs run faster by a factor of x3

without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Manufacturing Issues

― Manufacturing cost goes up as feature size decreases

― Cost of a semiconductor fabrication plant doubles

every 4 years (Rock’s Law)

― CMOS feature size is limited to 5 nm (at least 10 atoms)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for (i = 0; i < 1012; ++i)

z[i] = x[i] + y[i];

― We will have to access 3×1012 data items in one second

― Speed of light is, c  3×108 m/s

― So each data item must be within c / 3×1012  0.1 mm

from the CPU on the average

― All data must be put inside a 0.2 mm × 0.2 mm square

― Each data item (≥ 8 bytes) can occupy only 1 Å2 space!

(size of a small atom!)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Memory Wall

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Unicore Performance Has Hit a Wall!

Some Reasons

― Lack of additional ILP

(Instruction Level Hidden Parallelism)

― High power density

― Manufacturing issues

― Physical limits

― Memory speed

“Oh Sinnerman, where you gonna run to?”

— Sinnerman (recorded by Nina Simone)

Where You Gonna Run To?

― Changing f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

― Changing f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

― And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?

― Changing f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

― And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?

Moore’s Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges

Source: www.top500.org

Top 500 Supercomputing Sites (Cores / Socket)

No Free Lunch for Traditional Software

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

A Useful Classification

of Parallel Computers

Parallel Computer Memory Architecture
(Distributed Memory)

― Each processor has its own

local memory ― no global

address space

― Changes in local memory by

one processor have no effect

on memory of other processors

― Communication network to connect inter-processor memory

― Programming

― Message Passing Interface (MPI)

― Many once available: PVM, Chameleon, MPL, NX, etc.

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Shared Memory)

― All processors access all memory

as global address space

― Changes in memory by one

processor are visible to all others

― Two types

― Uniform Memory Access

(UMA)

― Non-Uniform Memory Access

(NUMA)

― Programming

― Open Multi-Processing (OpenMP)

― Cilk/Cilk++ and Intel Cilk Plus

― Intel Thread Building Block (TBB), etc.

UMA

NUMA

Source: Blaise Barney, LLNL

Parallel Computer Memory Architecture
(Hybrid Distributed-Shared Memory)

― The share-memory component

can be a cache-coherent SMP or

a Graphics Processing Unit (GPU)

― The distributed-memory

component is the networking of

multiple SMP/GPU machines

― Most common architecture

for the largest and fastest

computers in the world today

― Programming

― OpenMP / Cilk + CUDA / OpenCL + MPI, etc.

Source: Blaise Barney, LLNL

Types of Parallelism

Nested Parallelism
int comb (int n, int r)
{

if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = comb(n – 1, r - 1);
y = comb(n – 1, r);

return (x + y);
}

int comb (int n, int r)
{

if (r > n) return 0;
if (r == 0 || r == n) return 1;

int x, y;

x = spawn comb(n – 1, r - 1);
y = comb(n – 1, r);

sync;

return (x + y);
}

Grant permission to execute

the called (spawned) function

in parallel with the caller.Control cannot pass this point

until all spawned children have

returned.

Serial Code

Parallel Code

Loop Parallelism

in-place

transpose

for (int i = 1; i < n; ++i)
for (int j = 0; j < i; ++j)

{
double t = A[i][j];
A[i][j] = A[j][i];
A[j][i] = t;

}

Serial Code

parallel for (int i = 1; i < n; ++i)
for (int j = 0; j < i; ++j)

{
double t = A[i][j];
A[i][j] = A[j][i];
A[j][i] = t;

}

Parallel Code

Allows all iterations of the loop

to be executed in parallel.
Can be converted to spawns and syncs

using recursive divide-and-conquer.

Analyzing

Parallel Algorithms

Speedup

Speedup, 𝑆𝑝 =
𝑇1

𝑇𝑝

Let 𝑇𝑝 = running time using 𝑝 identical processing elements

Theoretically, 𝑆𝑝 ≤ 𝑝

Perfect or linear or ideal speedup if 𝑆𝑝 = 𝑝

Speedup

So
u

rc
e:

G
ra

m
a

et
 a

l.,
 “

In
tr

o
d

u
ct

io
n

 t
o

 P
ar

al
le

l C
o

m
p

u
ti

n
g”

,
2

n
d

Ed
it

io
n

Consider adding 𝑛 numbers

using 𝑛 identical processing

elements.

Serial runtime, 𝑇 =  𝑛

Parallel runtime, 𝑇𝑛=  log 𝑛

Speedup, 𝑆𝑛=
𝑇1

𝑇𝑛
= 

𝑛

log 𝑛

Parallelism & Span Law

Parallelism, 𝑃 =
𝑇1

𝑇∞

We defined, 𝑇𝑝 = runtime on 𝑝 identical processing elements

Parallelism is an upper bound on speedup, i.e., 𝑆𝑝 ≤ 𝑃

Then span, 𝑇∞ = runtime on an infinite number of identical

processing elements

Span Law

𝑇𝑝 ≥ 𝑇∞

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by 𝑇1

On a Parallel Computer: is given by 𝑝𝑇𝑝

Work Law

𝑇𝑝 ≥
𝑇1
𝑝

A runtime/online scheduler maps tasks to processing elements

dynamically at runtime.

A greedy scheduler never leaves a processing element idle if it can

map a task to it.

Bounding Parallel Running Time (𝑻𝒑)

Theorem [Graham’68, Brent’74]: For any greedy scheduler,

𝑇𝑝
𝑇1
𝑝
+ 𝑇

Corollary: For any greedy scheduler,

where 𝑇𝑝
∗ is the running time due to optimal scheduling on p

processing elements.

𝑇𝑝 ≤ 2𝑇𝑝
∗ ,

Analyzing Parallel

Matrix Multiplication

Iter-MM (Z, X, Y) { X, Y, Z are n × n matrices,

where n is a positive integer }

1. for i  1 to n do

3. Z[i][j]  0

4. for k  1 to n do

2. for j  1 to n do

5. Z[i][j]  Z[i][j] + X[i][k]  Y[k][j]

Parallel Iterative MM

Par-Iter-MM (Z, X, Y) { X, Y, Z are n × n matrices,

where n is a positive integer }

1. parallel for i  1 to n do

3. Z[i][j]  0

4. for k  1 to n do

2. parallel for j  1 to n do

5. Z[i][j]  Z[i][j] + X[i][k]  Y[k][j]

Parallel Iterative MM

Par-Iter-MM (Z, X, Y) { X, Y, Z are n × n matrices,

where n is a positive integer }

1. parallel for i  1 to n do

3. Z[i][j]  0

4. for k  1 to n do

2. parallel for j  1 to n do

5. Z[i][j]  Z[i][j] + X[i][k]  Y[k][j]

Parallelism:
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛2

Work: 𝑇1 𝑛 =  𝑛3

Span: 𝑇∞ 𝑛 =  𝑛

Parallel Running Time: 𝑇𝑝 𝑛 = 
𝑇1 𝑛

𝑝
+ 𝑇∞ 𝑛 = 

𝑛3

𝑝
+ 𝑛

Parallel Recursive MM

Z

n

n

n/2

n/2 Z11

Z21

Z12

Z22



n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

 

X Y

n

n

n/2

n/2 X11

X21

X12

X22

n

n

n/2

n/2 Y11

Y21

Y12

Y22

Parallel Recursive MM

Par-Rec-MM (Z, X, Y) { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1. if n = 1 then

3. else

4. spawn Par-Rec-MM (Z11, X11, Y11)

2. Z  Z + X  Y

5. spawn Par-Rec-MM (Z12, X11, Y12)

6. spawn Par-Rec-MM (Z21, X21, Y11)

7. Par-Rec-MM (Z21, X21, Y12)

9. spawn Par-Rec-MM (Z11, X12, Y21)

10. spawn Par-Rec-MM (Z12, X12, Y22)

11. spawn Par-Rec-MM (Z21, X22, Y21)

12. Par-Rec-MM (Z22, X22, Y22)

13. sync

14. endif

8. sync

Parallel Recursive MM

Par-Rec-MM (Z, X, Y) { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1. if n = 1 then

3. else

4. spawn Par-Rec-MM (Z11, X11, Y11)

2. Z  Z + X  Y

5. spawn Par-Rec-MM (Z12, X11, Y12)

6. spawn Par-Rec-MM (Z21, X21, Y11)

7. Par-Rec-MM (Z21, X21, Y12)

9. spawn Par-Rec-MM (Z11, X12, Y21)

10. spawn Par-Rec-MM (Z12, X12, Y22)

11. spawn Par-Rec-MM (Z21, X22, Y21)

12. Par-Rec-MM (Z22, X22, Y22)

13. sync

14. endif

8. sync

𝑇1 𝑛 =
 1 , 𝑖𝑓 𝑛 = 1,

8𝑇1
𝑛

2
+  1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛3

𝑇∞ 𝑛 =
 1 , 𝑖𝑓 𝑛 = 1,

2𝑇∞
𝑛

2
+  1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛

𝑠∞ 𝑛 =  1

Parallelism:
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛2

Additional Space:

Span:

Work:

Recursive MM with More Parallelism

Z

n

n

n/2

n/2 Z11

Z21

Z12

Z22

 

n

n

n/2

n/2 X11Y11

X21Y11

X11Y12

X21Y12

n

n

n/2

n/2 X12Y21

X22Y21

X12Y22

X22Y22



n

n

n/2

n/2 X11 Y11 + X12 Y21

X21 Y11 + X22 Y21

X11 Y12 + X12 Y22

X21 Y12 + X22 Y22

Par-Rec-MM2 (Z, X, Y) { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1. if n = 1 then

3. else { T is a temporary n  n matrix }

4. spawn Par-Rec-MM2 (Z11, X11, Y11)

2. Z  Z + X  Y

5. spawn Par-Rec-MM2 (Z12, X11, Y12)

6. spawn Par-Rec-MM2 (Z21, X21, Y11)

7. spawn Par-Rec-MM2 (Z21, X21, Y12)

8. spawn Par-Rec-MM2 (T11, X12, Y21)

9. spawn Par-Rec-MM2 (T12, X12, Y22)

10. spawn Par-Rec-MM2 (T21, X22, Y21)

11. Par-Rec-MM2 (T22, X22, Y22)

12. sync

13. parallel for i  1 to n do

15. Z[i][j]  Z[i][j] + T[i][j]

14. parallel for j  1 to n do

16. endif

Recursive MM with More Parallelism

Par-Rec-MM2 (Z, X, Y) { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1. if n = 1 then

3. else { T is a temporary n  n matrix }

4. spawn Par-Rec-MM2 (Z11, X11, Y11)

2. Z  Z + X  Y

5. spawn Par-Rec-MM2 (Z12, X11, Y12)

6. spawn Par-Rec-MM2 (Z21, X21, Y11)

7. spawn Par-Rec-MM2 (Z21, X21, Y12)

8. spawn Par-Rec-MM2 (T11, X12, Y21)

9. spawn Par-Rec-MM2 (T12, X12, Y22)

10. spawn Par-Rec-MM2 (T21, X22, Y21)

11. Par-Rec-MM2 (T22, X22, Y22)

12. sync

13. parallel for i  1 to n do

15. Z[i][j]  Z[i][j] + T[i][j]

14. parallel for j  1 to n do

16. endif

𝑇1 𝑛 =
 1 , 𝑖𝑓 𝑛 = 1,

8𝑇1
𝑛

2
+  𝑛2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛3

𝑇∞ 𝑛 =
 1 , 𝑖𝑓 𝑛 = 1,

𝑇∞
𝑛

2
+  log 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  log2𝑛

𝑠∞ 𝑛 =
 1 , 𝑖𝑓 𝑛 = 1,

8𝑠∞
𝑛

2
+  𝑛2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛3

Parallelism:
𝑇1 𝑛

𝑇∞ 𝑛
= 

𝑛3

log2 𝑛

Additional Space:

Span:

Work:

Recursive MM with More Parallelism

Distributed-Memory Naïve Matrix Multiplication

1

n

ij ik kj

k

z x y




Iter-MM (X, Y, Z, n)

1. for i  1 to n do

2. for j  1 to n do

3. for k  1 to n do

4. zij  zij + xik  ykj

1

n

ij ik kj

k

z x y




Suppose we have 𝑝 = 𝑛 × 𝑛 processors, and processor 𝑃𝑖𝑗 is

responsible for computing 𝑧𝑖𝑗.

Let’s assume that one master processor initially holds both 𝑋 and 𝑌.

Each processor in the group {𝑃𝑖,1, 𝑃𝑖,2, … , 𝑃𝑖,𝑛} will require row 𝑖 of 𝑋.

Similarly, for other rows of 𝑋, and all columns of 𝑌.

Each 𝑃𝑖𝑗 computes 𝑧𝑖𝑗 and sends back to master.

Distributed-Memory Naïve Matrix Multiplication

1

n

ij ik kj

k

z x y




Let 𝑡𝑠 be the startup time of a message, and

𝑡𝑤 be the per-word transfer time.

The communication complexity of broadcasting 𝑚 units of data to a

group of size 𝑛 is 𝑡𝑠 +𝑚𝑡𝑤 log 𝑛.

Communication complexity of sending one unit of data back to

master is 𝑡𝑠 + 𝑡𝑤 .

Hence, 𝑡𝑐𝑜𝑚𝑚 ≤ 2𝑛 𝑡𝑠 + 𝑛𝑡𝑤 log 𝑛 + 𝑛2 𝑡𝑠 + 𝑡𝑤 .

Also 𝑡𝑐𝑜𝑚𝑝 = 2𝑛.

Finally, 𝑇𝑝 = 𝑡𝑐𝑜𝑚𝑝 + 𝑡𝑐𝑜𝑚𝑚.

Distributed-Memory Naïve Matrix Multiplication

The log 𝑛 factor
vanishes because

of pipelining

Scaling Laws

Scaling of Parallel Algorithms
(Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, 𝑇𝑝 ≥ 1 − 𝑓 𝑇1 + 𝑓
𝑇1

𝑝

Speedup, 𝑆𝑝 =
𝑇1

𝑇𝑝
≤

𝑝

𝑓+ 1−𝑓 𝑝
=

1

1−𝑓 +
𝑓

𝑝

≤
1

1−𝑓

Scaling of Parallel Algorithms
(Amdahl’s Law)

Suppose only a fraction f of a computation can be parallelized.

Speedup, 𝑆𝑝 =
𝑇1

𝑇𝑝
≤

1

1−𝑓 +
𝑓

𝑝

≤
1

1−𝑓

Source: Wikipedia

Strong Scaling

How 𝑇𝑝 (or 𝑆𝑝) varies with 𝑝 when the problem size is fixed.

Strong Scaling vs. Weak Scaling

Weak Scaling

How 𝑇𝑝 (or 𝑆𝑝) varies with 𝑝 when the problem size per

processing element is fixed.

So
u

rc
e:

M
ar

th
a

K
im

, C
o

lu
m

b
ia

 U
n

iv
er

si
ty

A parallel algorithm is called scalable if its efficiency can be

maintained at a fixed value by simultaneously increasing the number

of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing

processing elements effectively.

Scalable Parallel Algorithms

Efficiency, 𝐸𝑝 =
𝑆𝑝

𝑝
=

𝑇1

𝑝𝑇𝑝

So
u

rc
e:

G
ra

m
a

et
 a

l.,

“I
n

tr
o

d
u

ct
io

n
 t

o
 P

ar
al

le
l C

o
m

p
u

ti
n

g
”,

2
n

d
Ed

it
io

n

“We used to joke that

“parallel computing is the future, and always will be,”

but the pessimists have been proven wrong.”

— Tony Hey

Now Have Fun!

