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Why Parallelism?



Moore’s Law

Source: Wikipedia



Unicore Performance

Source: Jeff Preshing, 2012, http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/



Unicore Performance Has Hit a Wall!

Some Reasons

― Lack of additional ILP 

( Instruction Level Hidden Parallelism )

― High power density

― Manufacturing issues

― Physical limits

― Memory speed



Unicore Performance: No Additional ILP

Exhausted all ideas to exploit hidden parallelism? 

― Multiple simultaneous instructions

― Instruction Pipelining

― Out-of-order instructions

― Speculative execution

― Branch prediction

― Register renaming, etc.

“Everything that can be invented has been invented.”

— Charles H. Duell

Commissioner, U.S. patent office, 1899 



Unicore Performance: High Power Density
― Dynamic power, Pd  V 2 f C

― V = supply voltage

― f = clock frequency

― C = capacitance

― But V  f

― Thus Pd  f 3

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 ( Simon Floyd )



Unicore Performance: Manufacturing Issues

― Frequency,  f  1 / s

― s = feature size ( transistor dimension )

― Transistors / unit area  1 / s2

― Typically, die size  1 / s

― So, what happens if feature size goes down by a factor of x?

― Raw computing power goes up by a factor of x4 !

― Typically most programs run faster by a factor of x3 

without any change!

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Manufacturing Issues

― Manufacturing cost goes up as feature size decreases

― Cost of a semiconductor fabrication plant doubles 

every 4 years ( Rock’s Law )

― CMOS feature size is limited to 5 nm ( at least 10 atoms )

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

for ( i = 0; i < 1012; ++i )

z[ i ] = x[ i ] + y[ i ];

― We will have to access 3×1012 data items in one second

― Speed of light is, c  3×108 m/s

― So each data item must be within c / 3×1012  0.1 mm 

from the CPU on the average

― All data must be put inside a 0.2 mm × 0.2 mm square

― Each data item ( ≥ 8 bytes ) can occupy only 1 Å2 space!

( size of a small atom! )

Source: Kathy Yelick and Jim Demmel, UC Berkeley



Unicore Performance: Memory Wall

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems



Unicore Performance Has Hit a Wall!

Some Reasons

― Lack of additional ILP 

( Instruction Level Hidden Parallelism )

― High power density

― Manufacturing issues

― Physical limits

― Memory speed

“Oh Sinnerman, where you gonna run to?”

— Sinnerman ( recorded by Nina Simone ) 



Where You Gonna Run To?

― Changing  f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation



― Changing  f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

― And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?



― Changing  f by 20% changes performance by 13%

― So what happens if we overclock by 20%?

― And underclock by 20%?

Source: Andrew A. Chien, Vice President of Research, Intel Corporation

Where You Gonna Run To?



Moore’s Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges



Source: www.top500.org

Top 500 Supercomputing Sites ( Cores / Socket )



No Free Lunch for Traditional Software

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)



A Useful Classification 

of Parallel Computers



Parallel Computer Memory Architecture
( Distributed Memory )

― Each processor has its own 

local memory ― no global 

address  space

― Changes in local memory by 

one processor have no effect

on memory of other processors

― Communication network to connect inter-processor memory

― Programming 

― Message Passing Interface ( MPI )

― Many once available: PVM, Chameleon, MPL, NX, etc.

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Shared Memory )

― All processors access all memory 

as global address  space

― Changes in memory by one

processor are visible to all others

― Two types

― Uniform Memory Access 

( UMA )

― Non-Uniform Memory Access 

( NUMA )

― Programming 

― Open Multi-Processing ( OpenMP )

― Cilk/Cilk++ and Intel Cilk Plus

― Intel Thread Building Block ( TBB ), etc.

UMA

NUMA

Source: Blaise Barney, LLNL



Parallel Computer Memory Architecture
( Hybrid Distributed-Shared Memory )

― The share-memory component

can be a cache-coherent SMP or

a Graphics Processing Unit (GPU)

― The distributed-memory

component is the networking of

multiple SMP/GPU machines

― Most common architecture

for the largest and fastest

computers in the world today

― Programming 

― OpenMP / Cilk +  CUDA / OpenCL +  MPI, etc.

Source: Blaise Barney, LLNL



Types of Parallelism



Nested Parallelism
int comb ( int n, int r ) 
{

if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = comb( n – 1, r - 1 );
y = comb( n – 1, r );

return ( x + y );
}

int comb ( int n, int r ) 
{

if ( r > n ) return 0;
if ( r == 0 || r == n ) return 1;

int x, y;

x = spawn comb( n – 1, r - 1 );
y = comb( n – 1, r );

sync;

return ( x + y );
}

Grant permission to execute 

the called ( spawned ) function 

in parallel with the caller.Control cannot pass this point 

until all spawned children have 

returned.

Serial Code

Parallel Code



Loop Parallelism

in-place

transpose

for ( int i = 1; i < n; ++i )
for ( int j = 0; j < i; ++j )

{
double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

Serial Code

parallel for ( int i = 1; i < n; ++i )
for ( int j = 0; j < i; ++j )

{
double t = A[ i ][ j ];
A[ i ][ j ] = A[ j ][ i ]; 
A[ j ][ i ] = t;

}

Parallel Code

Allows all iterations of the loop 

to be executed in parallel.
Can be converted to spawns and syncs 

using recursive divide-and-conquer.



Analyzing 

Parallel Algorithms



Speedup

Speedup, 𝑆𝑝 =
𝑇1

𝑇𝑝

Let  𝑇𝑝 = running time using 𝑝 identical processing elements

Theoretically, 𝑆𝑝 ≤ 𝑝

Perfect or linear or ideal speedup if 𝑆𝑝 = 𝑝



Speedup
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Consider adding 𝑛 numbers 

using 𝑛 identical processing 

elements.

Serial runtime, 𝑇 =  𝑛

Parallel runtime, 𝑇𝑛=  log 𝑛

Speedup, 𝑆𝑛= 
𝑇1

𝑇𝑛
= 

𝑛

log 𝑛



Parallelism & Span Law

Parallelism, 𝑃 =
𝑇1

𝑇∞

We defined, 𝑇𝑝 = runtime on 𝑝 identical processing elements

Parallelism is an upper bound on speedup, i.e., 𝑆𝑝 ≤ 𝑃

Then span, 𝑇∞ = runtime on an infinite number of identical 

processing elements

Span Law

𝑇𝑝 ≥ 𝑇∞



Work Law

The cost of solving ( or work performed for solving ) a problem:

On a Serial Computer: is given by 𝑇1

On a Parallel Computer: is given by 𝑝𝑇𝑝

Work Law

𝑇𝑝 ≥
𝑇1
𝑝



A runtime/online scheduler maps tasks to processing elements 

dynamically at runtime.

A greedy scheduler never leaves a processing element idle if it can 

map a task to it.

Bounding Parallel Running Time ( 𝑻𝒑 ) 

Theorem [ Graham’68, Brent’74 ]: For any greedy scheduler,

𝑇𝑝
𝑇1
𝑝
+ 𝑇

Corollary: For any greedy scheduler,

where 𝑇𝑝
∗ is the running time due to optimal scheduling on p

processing elements.

𝑇𝑝 ≤ 2𝑇𝑝
∗ ,  



Analyzing Parallel

Matrix Multiplication



Iter-MM ( Z, X, Y )              { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  for i  1 to n do

3.            Z[ i ][ j ]  0

4.            for k  1 to n do

2.       for j  1 to n do

5.                 Z[ i ][ j ]  Z[ i ][ j ] + X[ i ][ k ]  Y[ k ][ j ]

Parallel Iterative MM

Par-Iter-MM ( Z, X, Y )          { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  parallel for i  1 to n do

3.            Z[ i ][ j ]  0

4.            for k  1 to n do

2.       parallel for j  1 to n do

5.                 Z[ i ][ j ]  Z[ i ][ j ] + X[ i ][ k ]  Y[ k ][ j ]



Parallel Iterative MM

Par-Iter-MM ( Z, X, Y )          { X, Y, Z are n × n matrices,

where n is a positive integer }

1.  parallel for i  1 to n do

3.            Z[ i ][ j ]  0

4.            for k  1 to n do

2.       parallel for j  1 to n do

5.                 Z[ i ][ j ]  Z[ i ][ j ] + X[ i ][ k ]  Y[ k ][ j ]

Parallelism: 
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛2

Work:   𝑇1 𝑛 =  𝑛3

Span:   𝑇∞ 𝑛 =  𝑛

Parallel Running Time: 𝑇𝑝 𝑛 = 
𝑇1 𝑛

𝑝
+ 𝑇∞ 𝑛 = 

𝑛3

𝑝
+ 𝑛



Parallel Recursive MM
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Parallel Recursive MM

Par-Rec-MM ( Z, X, Y )     { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1.  if n = 1 then

3.  else

4.      spawn Par-Rec-MM (  Z11,  X11,  Y11 )

2.      Z  Z + X  Y

5.      spawn Par-Rec-MM (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM (  Z21,  X21,  Y11 )

7.                Par-Rec-MM (  Z21,  X21,  Y12 )

9.      spawn Par-Rec-MM (  Z11,  X12,  Y21 )

10.      spawn Par-Rec-MM (  Z12,  X12,  Y22 )

11.      spawn Par-Rec-MM (  Z21,  X22,  Y21 )

12.                Par-Rec-MM (  Z22,  X22,  Y22 )

13.      sync

14.  endif

8.      sync



Parallel Recursive MM

Par-Rec-MM ( Z, X, Y )     { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1.  if n = 1 then

3.  else

4.      spawn Par-Rec-MM (  Z11,  X11,  Y11 )

2.      Z  Z + X  Y

5.      spawn Par-Rec-MM (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM (  Z21,  X21,  Y11 )

7.                Par-Rec-MM (  Z21,  X21,  Y12 )

9.      spawn Par-Rec-MM (  Z11,  X12,  Y21 )

10.      spawn Par-Rec-MM (  Z12,  X12,  Y22 )

11.      spawn Par-Rec-MM (  Z21,  X22,  Y21 )

12.                Par-Rec-MM (  Z22,  X22,  Y22 )

13.      sync

14.  endif

8.      sync

𝑇1 𝑛 =  
 1 , 𝑖𝑓 𝑛 = 1,

8𝑇1
𝑛

2
+  1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛3

𝑇∞ 𝑛 =  
 1 , 𝑖𝑓 𝑛 = 1,

2𝑇∞
𝑛

2
+  1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛

𝑠∞ 𝑛 =  1

Parallelism: 
𝑇1 𝑛

𝑇∞ 𝑛
=  𝑛2

Additional Space:

Span:

Work:



Recursive MM with More Parallelism
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Par-Rec-MM2 ( Z, X, Y )      { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1.  if n = 1 then

3.  else          { T is a temporary n  n matrix }

4.      spawn Par-Rec-MM2 (  Z11,  X11,  Y11 )

2.      Z  Z + X  Y

5.      spawn Par-Rec-MM2 (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM2 (  Z21,  X21,  Y11 )

7.      spawn Par-Rec-MM2 (  Z21,  X21,  Y12 )

8.      spawn Par-Rec-MM2 (  T11,  X12,  Y21 )

9.      spawn Par-Rec-MM2 (  T12,  X12,  Y22 )

10.      spawn Par-Rec-MM2 (  T21,  X22,  Y21 )

11.                Par-Rec-MM2 (  T22,  X22,  Y22 )

12.      sync

13.      parallel for i  1 to n do

15.                Z[ i ][ j ]  Z[ i ][ j ] + T[ i ][ j ]

14.          parallel for j  1 to n do

16.  endif

Recursive MM with More Parallelism



Par-Rec-MM2 ( Z, X, Y )      { X, Y, Z are n × n matrices,

where n = 2k for integer k  0 }

1.  if n = 1 then

3.  else          { T is a temporary n  n matrix }

4.      spawn Par-Rec-MM2 (  Z11,  X11,  Y11 )

2.      Z  Z + X  Y

5.      spawn Par-Rec-MM2 (  Z12,  X11,  Y12 )

6.      spawn Par-Rec-MM2 (  Z21,  X21,  Y11 )

7.      spawn Par-Rec-MM2 (  Z21,  X21,  Y12 )

8.      spawn Par-Rec-MM2 (  T11,  X12,  Y21 )

9.      spawn Par-Rec-MM2 (  T12,  X12,  Y22 )

10.      spawn Par-Rec-MM2 (  T21,  X22,  Y21 )

11.                Par-Rec-MM2 (  T22,  X22,  Y22 )

12.      sync

13.      parallel for i  1 to n do

15.                Z[ i ][ j ]  Z[ i ][ j ] + T[ i ][ j ]

14.          parallel for j  1 to n do

16.  endif

𝑇1 𝑛 =  
 1 , 𝑖𝑓 𝑛 = 1,

8𝑇1
𝑛

2
+  𝑛2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛3

𝑇∞ 𝑛 =  
 1 , 𝑖𝑓 𝑛 = 1,

𝑇∞
𝑛

2
+  log 𝑛 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  log2𝑛

𝑠∞ 𝑛 =  
 1 , 𝑖𝑓 𝑛 = 1,

8𝑠∞
𝑛

2
+  𝑛2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

=  𝑛3

Parallelism: 
𝑇1 𝑛

𝑇∞ 𝑛
= 

𝑛3

log2 𝑛

Additional Space:

Span:

Work:

Recursive MM with More Parallelism



Distributed-Memory Naïve Matrix Multiplication

1

n

ij ik kj

k

z x y




Iter-MM ( X, Y, Z, n )

1.   for i  1  to n  do

2.         for j  1  to n  do

3.               for k  1  to n  do

4.                      zij  zij + xik  ykj



1

n

ij ik kj

k

z x y




Suppose we have 𝑝 = 𝑛 × 𝑛 processors, and processor 𝑃𝑖𝑗 is 

responsible for computing 𝑧𝑖𝑗. 

Let’s assume that one master processor initially holds both 𝑋 and 𝑌. 

Each processor in the group {𝑃𝑖,1, 𝑃𝑖,2, … , 𝑃𝑖,𝑛} will require row 𝑖 of 𝑋.

Similarly, for other rows of 𝑋, and all columns of 𝑌.

Each 𝑃𝑖𝑗 computes 𝑧𝑖𝑗 and sends back to master. 

Distributed-Memory Naïve Matrix Multiplication



1

n

ij ik kj

k

z x y




Let 𝑡𝑠 be the startup time of a message, and 

𝑡𝑤 be the per-word transfer time. 

The communication complexity of broadcasting 𝑚 units of data to a 

group of size 𝑛 is 𝑡𝑠 +𝑚𝑡𝑤 log 𝑛. 

Communication complexity of sending one unit of data back to 

master is 𝑡𝑠 + 𝑡𝑤 . 

Hence, 𝑡𝑐𝑜𝑚𝑚 ≤ 2𝑛 𝑡𝑠 + 𝑛𝑡𝑤 log 𝑛 + 𝑛2 𝑡𝑠 + 𝑡𝑤 .

Also 𝑡𝑐𝑜𝑚𝑝 = 2𝑛.

Finally, 𝑇𝑝 = 𝑡𝑐𝑜𝑚𝑝 + 𝑡𝑐𝑜𝑚𝑚.

Distributed-Memory Naïve Matrix Multiplication

The log 𝑛 factor 
vanishes because 

of pipelining 



Scaling Laws



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

Then parallel running time, 𝑇𝑝 ≥ 1 − 𝑓 𝑇1 + 𝑓
𝑇1

𝑝

Speedup, 𝑆𝑝 =
𝑇1

𝑇𝑝
≤

𝑝

𝑓+ 1−𝑓 𝑝
=

1

1−𝑓 +
𝑓

𝑝

≤
1

1−𝑓



Scaling of Parallel Algorithms
( Amdahl’s Law )

Suppose only a fraction f of a computation can be parallelized.

Speedup, 𝑆𝑝 =
𝑇1

𝑇𝑝
≤

1

1−𝑓 +
𝑓

𝑝

≤
1

1−𝑓

Source: Wikipedia



Strong Scaling

How 𝑇𝑝 ( or 𝑆𝑝 ) varies with 𝑝 when the problem size is fixed.

Strong Scaling vs. Weak Scaling

Weak Scaling

How 𝑇𝑝 ( or 𝑆𝑝 ) varies with 𝑝 when the problem size per 

processing element is fixed.
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A parallel algorithm is called scalable if its efficiency can be 

maintained at a fixed value by simultaneously increasing the number 

of processing elements and the problem size.

Scalability reflects a parallel algorithm’s ability to utilize increasing 

processing elements effectively.

Scalable Parallel Algorithms

Efficiency, 𝐸𝑝 =
𝑆𝑝

𝑝
=

𝑇1

𝑝𝑇𝑝
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“We used to joke that 

“parallel computing is the future, and always will be,” 

but the pessimists have been proven wrong.”

— Tony Hey

Now Have Fun!


