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It’s all about Performance 
(slashdot.org)
"I am an intermediate-level programmer who works mostly in C# NET. I 
have a couple of image/video processing algorithms that are highly 
parallelizable — running them on a GPU instead of a CPU should result in 
a considerable speedup (anywhere from 10x times to perhaps 30x or 40x 
times speedup, depending on the quality of the implementation). Now here 
is my question: What, currently, is the most painless way to start playing 
with GPU programming? Do I have to learn CUDA/OpenCL — which 
seems a daunting task to me — or is there a simpler way? Perhaps a Visual 
Programming Language or 'VPL' that lets you connect boxes/nodes and 
access the GPU very simply? I should mention that I am on Windows, and 
that the GPU computing prototypes I want to build should be able to run on 
Windows. Surely there must a be a 'relatively painless' way out there, with 
which one can begin to learn how to harness the GPU?"
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and some responses:

§ “GPU programming is painful. A painless introduction 
doesn't capture the flavor of it.”

§ “Since the whole point of GPU programming is 
efficiency, don't even think about VBing it. Or 
Pythoning it. Or whatever layer of a shiny crap might 
seem superficially appealing to you. Learn OpenCL 
and do the job properly.”
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and a another (talking about a class)...
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“We were building little throw-away matrix multiply programs - for which 
we were given horribly inefficient and barely functional source to start 
with. The challenge was to make it run as fast as possible, with extra 
credit going to the fastest implementation. It turns out to accomplish this 
you basically need to understand every tier of the memory architecture 
of CUDA, the process by which it reads in cache lines to avoid collisions, 
how to optimize the read/write patterns, how the job would be split up 
among the GPU's (and the parameters used for the splitting), and 
basically every nit-picking detail of how the hardware actually runs. This 
runs counter to the level of abstraction that most CS majors are used to 
dealing with - if we wanted to do hardware we would've gone the EE or 
CE route - but if you want to truly want to grok CUDA, you have to 
become a hardware wiz. Otherwise you'll always be stuck wondering 
why you can never seem to get the level of speedup that the 
benchmarks suggest should be possible.”
  

Monday, August 26, 13



But my favorite ;-)
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“Yeah,  it would be like S&M without the pain . . . cute, 
but something essential is missing from the experience.

Heidi Klum has a TV show call "Germany's Next Top 
Model". She basically gets all "Ilsa, She-Wolf of the SS" 
on a bunch of neurotic, anorexic, pubescent girls, 
teaching them how a top model needs to suffer.

Heidi Klum would make a good GPU programming 
instructor.”
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So, why the pain?

§ A CPU’s (single core) performance has stagnated for 
the past 10(!!!) years.

§ GPU/Coprocessor technologies offer a disruptive 
opportunity to get back on the exponential track.

§ While the imaging industry (Adobe, Apple, etc.) has 
been using these technologies for years, the scientific 
applications are late to the game - techniques are not 
fully utilized by scientific programmers.
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Parallel programming IS mainstream programming!
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Classic (by now) Performance Graph
(Source: “The Free Lunch is Over: A Fundamental Turn Toward Concurrence in Software” by 

Herb Sutter (DDJ 3/2005))
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So, if you are a computer engineer, 
where do you spend your xistor 
budget?

- CISC
- reordering
- data & instruction 

cache
- hyper-threading
- several cores
- Strives for minimizing 

latency

- basically solve c = Ax + b

- many simple processors each 
with 1 thread

- One instruction (program) 
queue

- many, many cores

- Strives for maximizing 
bandwidth

CPU GPU
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Latency vs Bandwidth
§ Classic example
• Low Latency/low bandwidth

- race car with 1 rider travels 2400 miles @ 100 mph. Net delivery of 
passengers = 1 every 24 hours. Pretty low latency. You call up your 
friend and she arrives 24 hours later.

• high latency/high bandwidth
- bus with 80 people traveling the same distance @ 50mph. The first 

person arrives 48 hours later, but she has a whole orchestra with her!

§ Classical CPUs deliver low latency - they want to get 
the first answer to you as quickly as possible

§ For the GPU - getting the top left pixel of a screen is 
not useful if the bottom right pixel of the screen 
arrives too late. You want all of the pixels as quickly 
as possible

§ To program GPUs, YOU MUST UNDERSTAND THIS!
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Your options (in increasing pain and 
performance):

§ Ignore the hype (see graph - this is not an option)
§ Buy COTS software (think Adobe) and relax
§ Use libraries (cu-fftw, cublas, thrust, etc.)
• I’ll discuss one project using cufftw today

§ Use directives (openACC, openMP, etc.)
• Perhaps study more at the next tutorial...

§ Use (naively) openCL, CUDA
• You’ll have this skill (and more) by the end of the morning

§ Buckle down and study the hardware
• A little today, but much, much more study is required

§ Buckle down and learn parallel patterns
• A little today, but much, much more study is required
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Today’s Plan

§ Overview of CUDA
• Setup
• Hardware model
• Programming model

§ Some real code illustrating:
• map
• reduce (e.g., numerical integration)
• scan (e.g., prefix sum/max/min/...)
• Matrix Transpose (if time permits)

§ Porting techniques (ongoing study)
• fftw

§ Resources
11
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Reality Check
§ Many schools (and MOOCs!) have semester courses on these topics  

while we have 3 hours.
• I’m going to resist taking the conversation down a path that loses 50% 

of the attendees or that really requires it own 3 hours to cover 
properly.

• I will be taking some simplified shortcuts aimed to maximize the topics 
we can cover.

• I won’t tackle the questions of hardware system design - that deserves 
way more than 3 hours!

§ My goals:
• You will have a better idea of what CUDA is 
• You will have a realistic idea of the work involved in developing 

parallel programs and porting non-parallel code to perform well
• You will know where to get more information about hardware and 

software
• You will know what areas we can explore in future tutorials
• You can listen intelligently to the afternoon talks

12
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Overview - setup
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Overview - setup

§ Make sure your system supports the CUDA SDK (see 
web site)

§ Download the SDK from nvidia.com
§ Install by reading their directions (it changes so it is 

not worth recording here)
§ Set up your PATH to include the CUDA compilers and 

other binaries.
§ Be sure to browse the contents of 
• .../cuda/doc
• .../cuda/samples - seriously - you can learn a lot

14
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Overview Hardware
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Overview - Hardware

§ Intel systems seem to be evolving at about a 2 year 
cycle

§ nVidia systems are evolving at the same (non-
synchronized) pace.

§ Since this is a tutorial, we are going to keep this at a 
high level - when you get access to a system, you 
can learn all of the relevant details.

§ If you are designing a system - you need more than 
this tutorial!

16
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A Typical System (Sandy Bridge)
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Source: CUDA Programming A Developer’s Guide to Parallel Computing with GPUs by Shane Cook, Morgan Kaufmann
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Two instances

§ GeForce CTX480
• 448 CUDA cores
• Memory

- 1G global memory
- 320 bit interface width
- 134GB/s

• Cost - ~$500 from amazon.com

§ Tesla C2050
• 448 CUDA cores
• Memory

- 3G global
- 384 bit interface width
- 144 GB/s

• Cost - $1350 from amazon.com
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Block Diagram of GPU (G80/GT200)
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Source: CUDA Programming A Developer’s Guide to Parallel Computing with GPUs by Shane Cook, Morgan Kaufmann
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Programming Interlude - Discovery-1
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/*
 * Just how many cuda enabled devices on this machine?
 * Also, what are their properties?
 * 
 * Note - EVERY cuda call returns an error value. While
 * this is vital in real code, it gets in the way of 
 * tutorial code.  I'm showing it here for cudaGetDeviceCount
 * but will omit it for the rest of the tutorial.
 */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {

 int numberOfDevices;
 cudaError_t err;

 err = cudaGetDeviceCount(&numberOfDevices);
 if (err != cudaSuccess) {
  fprintf(stderr,"fail - cudaGetDeviceCount %d\n",err);
  exit(1);
 }
 printf("Number of cuda devices = %d\n",numberOfDevices);
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Programming Interlude - Discovery-2
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 /* the cudaDeviceProp struct is fairly large - read about it in the
    docs. */
 for (int dev = 0; dev < numberOfDevices; dev++) {
  cudaDeviceProp props;
  cudaGetDeviceProperties(&props,dev);
  printf("Device # %d\n",dev);
  printf(" name = %s\n",props.name);
  printf(" version = %d.%d\n",props.major,props.minor);
  printf(" total global memory = %ld\n",props.totalGlobalMem);
  printf(" shared Memory/Block = %ld\n",props.sharedMemPerBlock);
  printf(" registers/block = %d\n",props.regsPerBlock);
  printf(" warp size = %d\n",props.warpSize);
  printf(" Max threads/block = %d\n",props.maxThreadsPerBlock);
  printf(" Max Threads Dim = %d x %d x %d
\n",props.maxThreadsDim[0],
   props.maxThreadsDim[1],props.maxThreadsDim[2]);
  printf(" Max Grid Size = %d x %d x %d\n",props.maxGridSize[0],
   props.maxGridSize[1],props.maxGridSize[2]);
  printf(" Multi-processor count = %d
\n",props.multiProcessorCount);
  printf(" Max Threads/multiprocessor = %d
\n",props.maxThreadsPerMultiProcessor);
 }
 return 0;
}
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Programming Interlude - output
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drs@gpu2:~/Talk$ ./cuda-devices 
Number of cuda devices = 4
Device # 0
 name = Tesla C2050
 version = 2.0
 total global memory = 2817982464
 shared Memory/Block = 49152
 registers/block = 32768
 warp size = 32
 Max threads/block = 1024
 Max Threads Dim = 1024 x 1024 x 64
 Max Grid Size = 65535 x 65535 x 65535
 Multi-processor count = 14
 Max Threads/multiprocessor = 1536
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Overview - Software
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Programming CUDA 
§ In the bad old days, programming your GPU meant that you 

had to cast your problem as a graphics manipulation. CUDA 
(and openCL, etc.) permit you to treat the device as a more-
or-less general purpose computer.

§ Your programming of CUDA requires that you write code for 
both the host (e.g., the Intel CPU) and the device - the GPU. 

§ Functions that run on the device are called “kernels”
§ Both host and device code is written in CUDA-C, a 

(syntactically) minor extension of C (basically a handful of 
additional keywords and a strange calling syntax)

§ The host code does all of the setup and breakdown and 
“launches” kernels.

§ The kernels, once launched run asynchronously
§ Data xfers are synchronous by default

24
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The Basic Cuda Dance (host’s view)

1. Allocate space on the device
2. Copy data from the host to the device
3. Launch one or more kernels
4. Copy data from the device back to the host
5. Free space on the device

25
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The Basic Cuda Dance (Kernel view)

§ A kernel’s code describes what one thread does 
(think the “run” method of the Thread class in Java)

§ Each thread that is created when a kernel is launched 
has a (unique) number (zero based index) and each 
thread magically knows what its number is.

§ Frequently, when a computation produces an array of 
data as its result, each thread will be used to 
compute just 1 element of the result.

§ So, basically, you replace an external for loop with a 
ton of threads

26
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The code structure resembles simply 
unrolling loops
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for (int i = 0; i < n; i++) 
{
/compute output element i
result[i] = ...

}

get threadId
result[threadId] = ...

get threadId
result[threadId] = ...

get threadId
result[threadId] = ...

get threadId
result[threadId] = ...

...

Non-CUDA

CUDA

But you only have to
write 1 of these!
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Overview - Programming

§ The “native” way to program CUDA devices is by 
using a variant of C.
• These files typically have the extension “.cu”

§ These files are compiled by the “nvcc” program that
• picks out the CUDA kernels and compiles to “PTX” code (the 

machine code of the GPU)
• passes the host code onto the standard C compiler for your 

system.

28
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Overview - Programming Model
First Pass - Threads

§ A thread executes the instructions in your program.
§ In CUDA, threads are cheap and are allocated by the 

1000’s if not 1,000,000’s.
§ Threads have a small amount of local (private) 

memory (c not m)
§ If your program computes an array as output, you 

typically have 1 thread compute 1 element of the 
array.

§ You need to think - “I have to write a program that 
only computes 1 element of the answer.

29
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Overview - Programming Model
First Pass - Blocks
§ A Block is a bunch of threads (up to 1024 on modern 

devices)
§ When you launch a kernel, you create 1 or more 

blocks.
• It is your choice for the number of blocks and the number of 

threads/block - you choose to fit the problem & for 
performance

§ The block is the unit of scheduling for the GPU
• It is one reason why the GPU is so scalable
• They can run in any order in parallel or sequentially
• So, on a small GPU, you might run 1 block after another while 

on a larger GPU you might run a dozen or more in parallel.

§ Blocks cannot communicate with each other directly 
(only indirectly through global memory)

30
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Block Diagram of GPU (G80/GT200)
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Source: CUDA Programming A Developer’s Guide to Parallel Computing with GPUs by Shane Cook, Morgan Kaufmann
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Finally, A Data Access Pattern - the 
Map

xn-1x3x2x1x0 ...

yn-1y3y2y1y0 ...

Input Array

Output Array

process
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The Map in code
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for (int i = 0; i < n; i++) 
{
y[i] = f(x[i]);

}

Sequential Parallel

y[threadId] = f(x[threadId])

Quick quiz: If you have enough threads to cover the 
array, what is the “O” speed of these two algorithms?
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Code Interlude - sequential map

34

float square(float x) {
 return x*x;
}

int main(int argc, char** argv) {

 if (argc < 2) {
  printf("Usage: %s #-of-floats\n",argv[0]);
  exit(1);
 }
 int size = atoi(argv[1]);
 printf("size = %d\n",size);

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(size*sizeof(float));
 h_out =(float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
  h_in[i] = i;
 }

 startClock("compute");
 nonCudaMap(h_out,h_in,size);
 stopClock("compute");
  
 for (int i = 0; i < size; i++) {
  printf("%f -> %f\n",h_in[i],h_out[i]);
 }

 free(h_in);
 free(h_out);

 printClock("compute");
}

void nonCudaMap(float* out, float* in, int size) {
 for (int i = 0; i < size; i++) {
  out[i] = square(in[i]);
 }
}
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Code Interlude - CUDA map (host)
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int main(int argc, char** argv) {

        if (argc < 2) {
                printf("Usage: %s #-of-floats\n",argv[0]);
                exit(1);
        }
        int size = atoi(argv[1]);
        printf("size = %d\n",size);
 
 cudaDeviceProp props;
 cudaGetDeviceProperties(&props,0);
 if (size > props.maxThreadsPerBlock) {
  fprintf(stderr,"Max size for the small model is %d\n",
   props.maxThreadsPerBlock);
  exit(1);
 }

 void *d_in; // device data
 void *d_out;
 float *h_in; // host data
 float *h_out;

 cudaMalloc(&d_in,size*sizeof(float));
 cudaMalloc(&d_out,size*sizeof(float));
 h_in = (float*) malloc(size*sizeof(float));
 h_out =(float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
  h_in[i] = i;
 }

 startClock("copy data to device"); 
 cudaMemcpy(d_in,h_in,size*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy data to device"); 

 startClock("compute");
 
 // use one block and size threads

 map<<<1,size>>>((float*) d_out,(float*) d_in,size);
 cudaThreadSynchronize(); // forces wait for map to complete

 stopClock("compute");
 
 startClock("copy data to host");
 cudaMemcpy(h_out,d_out,size*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy data to host");

 for (int i = 0; i < size; i++) {
  printf("%f -> %f\n",h_in[i],h_out[i]);
 }

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy data to device");
 printClock("compute");
 printClock("copy data to host");
}
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Code Interlude - CUDA map (device)
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/*
 * squaring map kernel that runs in 1 block
 */

/*
 * runs on and callable from the device
 */

__device__ float square(float x) {
 return x*x;
}

/*
 * runs on device, callable from anywhere
 */

__global__ void map(float* out, float* in, int size) {
 int index = threadIdx.x;
 if (index >= size) return;
 out[index] = square(in[index]);
}
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Code Interlude - Timings for Map
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Code Interlude - Timings for Map

37

Size of array Sequential Time 
in micro seconds

CUDA Data 
Copy Time in 
micro seconds

Cuda Compute 
Time in micro 
seconds

256 4 42 37
512 7 42 37
1024 11 44 38
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So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it 
belongs to and which thread within each block, so it can 
easily compute it’s index into the array.
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So, How to deal with arrays > 1024?

38

A really long array

Blocks, each with 1024 or fewer threads...

Then, (somehow) each kernel knows which block it 
belongs to and which thread within each block, so it can 
easily compute it’s index into the array.
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Large Map Details:

39

Host Code
// use max threads/block and the required # of blocks

 int numBlocks = ceil(1.0*size/props.maxThreadsPerBlock);
 map<<<numBlocks,props.maxThreadsPerBlock>>>((float*) 
d_out,(float*) d_in,size);

Kernel Code
__global__ void map(float* out, float* in, int size) {
 int index = blockDim.x*blockIdx.x + threadIdx.x;
 if (index >= size) return;
 out[index] = square(in[index]);
}
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Code Interlude - Timings for Map

40

Size of array Sequential Time 
in micro seconds

CUDA Data 
Copy Time in 
micro seconds

Cuda Compute 
Time in micro 
seconds

256 4 42 37
512 7 42 37
1024 11 44 38
2048 20 49 41
4096 41 57 41
8192 77 78 41
16384 157 111 42
65536 612 225 62
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Code Interlude - Timings for Map

40

Size of array Sequential Time 
in micro seconds

CUDA Data 
Copy Time in 
micro seconds

Cuda Compute 
Time in micro 
seconds

256 4 42 37
512 7 42 37
1024 11 44 38
2048 20 49 41
4096 41 57 41
8192 77 78 41
16384 157 111 42
65536 612 225 62

Quick quiz: Why did the compute time jump up for the 
last trial?
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Porting Strategies
§ There are 3 main issues when porting code
• Does it improve the performance?
• Does it give the same (hopefully correct) answer?
• You probably do NOT want to irreparably modify the program 

to run on a GPU so that it cannot run on a CPU any longer
§ You should measure performance by profiling
§ This leads to 4 types of runs
• cpu (production)
• cpu with profiling
• gpu (production)
• gpu with profiling
• cpu and gpu with coherency check

§ I’ll assume that profiling is external to the program 
(compiler switch)

41
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Modifying the program

42

{
cpu only code

}

if (cpuOnly) {
run cpu code

} else if (gpuOnly) {
   run gpu code
} else { // both
capture and copy input state
run cpu code on original input state
run gpu code on copied input state producing separate output 
state
compare two output states for coherency and report discrepancies

}
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Porting Issues

§ Wildly differing answers probably means that you 
have messed up with synchronization. (Especially if 
the results and differently different each time your 
run.) GPUs are NOT flakey!

§ Small differences might be explained by the differing 
ways CPU and GPUs do arithmetic, especially the 
FMA (fused multiply add) instruction of the GPU 
where it computes round(a*b+c) rather than 
round(round(a*b) + c).
• For modern GPUs, try nvcc --fmad=false to see if it helps with 

coherency

43
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Memory Allocation on the Device

§ C
• void* d_data;

cudaMalloc(& d_data, numberOfBytes);
- This allocates the requested numberOfBytes on the device in global 

memory returning an error if it fails. The value returned into d_data is 
opaque. 

- DO NOT dereference d_data on the host! I prefer using void* so as to 
have any de-referencing fail.

- It is a good idea to flag device data with d_

§ Fortran
• float, device : d_data[1000]

44
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Memory Deallocation

§ C
• void* d_data;

cudaFree(d_data);
- returns error if failure.

§ Fortran
• automatic

45
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Data Movement
§ C
• void* d_data;

float* h_data;
cudaMemcpy(d_data,h_data,numberOfBytes,
                                           cudaMemcpyHostToDevice);
//...

cudaMemcpy(h_data,d_data,numberOfBytes,
                                           cudaMemcpyDeviceToHost);

• Again, you should always check for errors
• You can also copy host to host and device to device

§ Fortran
• d_data = h_data

...
h_data = d_data

46
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Device Selection 

§ cudaSetDevice(deviceNum);
• All further calls to cudaMalloc, cudaFree, cudaMemcpy, etc. 

will be directed toward that device.
• This could be a major win for you if you have multiple 

independent computations. 

47
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Terminology

§ There are a number of terms that are used 
throughout CUDA that have to be assimilated into 
your way of thinking.
• Kernel
• Thread
• Block
• Grid
• Launch

§ Some like to think top down, some bottom up - we will 
do both
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Kernel

§ A Kernel is a bit of code (function) that describes 
what 1 thread does.

§ A Kernel has a few “magic” variables that we will 
discuss in a few slides.

§ The parameters passed as arguments to a kernel are 
either simple data types (int, float, etc.) or pointers to 
global memory areas that had been allocated by the 
host program.

§ A Kernel has a limited amount of local (register) 
memory.
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Thread

§ A thread runs the code in a Kernel
§ Local data within a Kernel is private to each thread.
§ All threads share the global memory (and so have to 

be careful to cooperate)
§ All threads in a block share the “shared” memory 

(and so have to be careful to cooperate).
§ Threads do not have access to other blocks shared 

memory.
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Blocks

§ A Block “has-a” bunch of threads
• for current GPUs, the maximum number of threads varies from 

512 to 2048.
• Sometimes, it is useful to the programmer to view the threads 

linearly, as a 2-d array of threads (think about working on an 
array or image) or as a 3-d array of threads.

§ A Block is the unit of scheduling for the GPU
• That is, a Block is given to a SM for processing. Its code runs 

until complete. (An SM can run more than 1 block at a time.)
§ A Block has some memory (typically in the “k” range) 

that it shares among the threads.
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Grid 

§ When you launch a Kernel, you specify how many 
blocks to create and how many threads are in each 
block.

§ Sometimes, it suits the programmer to view these 
blocks as a linear collection, or as a 2-d array (think 
images) or even as a 3-d array.

§ Every block knows its position within the grid
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And the Launch
§ kernelName<<<grid,block,sizeOfSharedData>>>(params);
• where grid is either an int (1-D grid of blocks) or a dim3 type

- e.g. dim3 grid(10,10,100)
• block is either an int (1-D array of threads) or a dim3 type

- e.g. dim3 block(16,16,2)
• and the 3rd (optional) parameter in the <<<>>> is the number of bytes 

per block that will be shared.
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An finally, back to the thread
§ Each thread (which runs in a kernel) has some magic 

data in the form of structs.
§ gridDim.x, gridDim.y, gridDim.z
• Blocks are arranged in a 3-d Grid with the above dimensions
• Every thread sees the exact same values

§ blockIdx.x, blockIdx.y, blockIdx.z
• For each thread, this is the particular block that the thread 

belongs to
§ blockDim.x, blockDim.y, blockDim.z
• Threads in every block are arranged in a 3-d array with the 

above dimensions
• Every thread sees the exact same values

§ threadIdx.x, threadIdx.y, threadIdx.z
• For each thread, this is the position of the thread within the 

block
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Types of memory
§ Global
• Largest in size (3G)
• Slowest in access (100’s of clock cycles)
• Widest memory width (384 bits/48 bytes/12 floats)
• accessible to all threads

§ Shared
• Rather tight (48K)
• Much faster than Global
• Segmented and connected to the processors by a crossbar 

switch (need to be aware of contention)

§ Register
• Very tight (32K)
• Single cycle access
• Private to thread
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Another Data Pattern - Reduction

§ The simplest example of reduction is to compute the 
sum of the elements in an array. (e.g., numerical 
integration). The idea is that all of the elements of the 
array need to be read and that 1 number is created.

§ While I’ll use addition in the example, it will work with 
any associative binary operator (+, *, max, min, etc.)

§ The serial version is 0(n)

56

total = 0;
for (int i = 0; i<n; i++) {

total += data[i];
}
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Parallel version

§ The parallel version makes use of the associative law 
that (((a+b) + c) + d) is the same as (a+b) + (c + d). 
• The first expression is extremely sequential
• The second is much more parallel. One can compute a+b 

while some other processor computes (c+d).

§ In our example, we sum up 2**10 items. For the first 
pass, 1024 blocks of 1024 threads sums up each 
block and places the answer in an intermediate area. 
Then we do it again to the intermediate area.
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Serial Version:
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int main(int argc, char** argv) {

 if (argc < 2) {
  printf("Usage: %s #-of-floats\n",argv[0]);
  exit(1);
 }
 int size = atoi(argv[1]);
 printf("size = %d\n",size);

 float *h_in;
 float h_out;

 h_in = (float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
  h_in[i] = 1;
 }

 startClock("compute");
 nonCudaReduce(&h_out,h_in,size);
 stopClock("compute");
 
 printf("The sum is %f\n",h_out); 

 free(h_in);

 printClock("compute");
}

void nonCudaReduce(float* out, float* in, int size) {
 *out = 0.0;
 for (int i = 0; i < size; i++) {
  *out += in[i];
 }
}
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CUDA Version - Host Side
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int main(int argc, char** argv) {

        int size = 1024*1024;
        printf("size = %d\n",size);
 
 void *d_in; // device data
 void *d_mid; // device data - middle results
 void *d_out; // device data - the answer

 float *h_in; // host data
 float h_out;

 int numBlocks = 1024;

 cudaMalloc(&d_in,size*sizeof(float));
 cudaMalloc(&d_mid,numBlocks*sizeof(float));
 cudaMalloc(&d_out,sizeof(float));

 h_in = (float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
  h_in[i] = 1;
 }

 startClock("copy data to device"); 
 cudaMemcpy(d_in,h_in,size*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy data to device"); 

 startClock("compute");
 
 // use max threads/block and the required # of blocks AND
 // ask for some shared memory

 reduce<<<1024,1024,1024>>>((float*) d_mid,(float*) d_in,size);
 reduce<<<1,1024,1024>>>((float*)d_out,(float*)d_mid,1024);
 cudaThreadSynchronize();

 stopClock("compute");
 
 startClock("copy data to host");
 h_out = -17;
 cudaMemcpy(&h_out,d_out,sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy data to host");

 printf("The total is %f\n",h_out);
 free(h_in);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy data to device");
 printClock("compute");
 printClock("copy data to host");
}
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Cuda Version - Kernel
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__global__ void reduce(float* out, float* in, int size) {
 __shared__ float temp[1024];

 int index = blockDim.x*blockIdx.x + threadIdx.x;
 int myId = threadIdx.x;

 if (index >= size) return;

 // move data to shared memory for speed

 temp[myId] = in[index];
 __syncthreads();

 int stride = blockDim.x/2;
 while (stride >= 1) {
  if (myId < stride) {
   temp[myId] += temp[myId + stride];
  }
  __syncthreads();
  stride = stride/2;
 } 
 out[blockIdx.x] = temp[0];
}
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Timing

§ For 1,000,000 elements
• Serial Code 4.775 ms
• Cuda 1.148 (including copy - .7ms is the actual computation)

§ This can be greatly improved if the operator is more 
complex or if the input data can be computed on the 
device!

§ A deeper study of the hardware can also have a 
significant impact on the timing. (to be continued at a 
later date!)
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Another Data Pattern - Scanning 
§ A “scan” of an array is when you replace each 

element of an array by the sum of all of the elements 
before it plus itself (think turning a probability density 
into a distribution).

§ This works with all binary associative operators as 
well (+, *, max, min, etc.)

§ Example - the array [1, 7, -3, 2, 9, -4] is transformed 
to [1, 8, 5, 7, 16, 12].

§ Applications range from sorting to checkbook 
balancing, to management of resources, etc.

§ It SEEMS like an intractable serial problem, but it 
isn’t! (See the white board!)

62

Monday, August 26, 13



The point of all of this...
§ When I hear colleagues or the typical web curmudgeon 

make statements like: 

“I don’t know why they ask me about design patterns or O 
notation at job interviews ... you just don’t need it ... “

It just drives me nuts. These are the atoms of our 
business. These form the periodic table for programmers.

The good people at nVidia will gladly tell you that the key 
to programming CUDA well is to understand parallel 
programming, its patterns and its algorithms.

This will get  you 90% to peak performance. If you need 
the next 10%, you will have to learn the hardware.
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One more pattern for the road - 
transpose

§ This isn’t so much a pattern as a Kata - a routine that 
one performs to sharpen your skills - to build muscle 
memory - to free your mind to be able to work on the 
big picture. (And it is a lot of fun to make things work 
faster!)

§ The problem: Give a 1024 by 1024 array - transpose 
it. A(i,j) -> A(j,i). 
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Serial Code will run in 11.6ms.
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#define DIM 1024 

int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
  for (int j = 0; j < DIM; j++) {
   h_in[i + j*DIM] = value++;
  }
 }

 startClock("compute");
 nonCudaTranspose(h_out,h_in,DIM);
 stopClock("compute");
  
 free(h_in);
 free(h_out);

 printClock("compute");
}

void nonCudaTranspose(float* out, float* in, int size) {
 for (int i = 0; i < size; i++) {
  for (int j = 0; j < size; j++) {
   out[j + i*size] = in[i + j*size];
  }
 }
}
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First Try - no threading - time 367ms
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#define DIM 1024 

int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 void *d_in;
 void *d_out;

 cudaMalloc(&d_in,DIM*DIM*sizeof(float));
 cudaMalloc(&d_out,DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
  for (int j = 0; j < DIM; j++) {
   h_in[i + j*DIM] = value++;
  }
 }

 startClock("copy in");
 cudaMemcpy(d_in,h_in,DIM*DIM*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy in");

 startClock("compute");
 cudaTransposeSerial<<<1,1>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");
  
 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeSerial(float* out, float* in, int size) {
 for (int i = 0; i < size; i++) {
  for (int j = 0; j < size; j++) {
   out[j + i*size] = in[i + j*size];
  }
 }
}
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Second Try - 1 thread/row - 3.4ms (100x!)
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int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 void *d_in;
 void *d_out;

 cudaMalloc(&d_in,DIM*DIM*sizeof(float));
 cudaMalloc(&d_out,DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
  for (int j = 0; j < DIM; j++) {
   h_in[i + j*DIM] = value++;
  }
 }

 startClock("copy in");
 cudaMemcpy(d_in,h_in,DIM*DIM*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy in");

 startClock("compute");
 cudaTransposeRow<<<1,1024>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");
  
 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeRow(float* out, float* in, int size) {
 int row = threadIdx.x;
 
 for (int j = 0; j < size; j++) {
  out[j + row*size] = in[row + j*size];
 }
}
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Third - fully parallized - .5 ms (10x more!)
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int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 void *d_in;
 void *d_out;

 cudaMalloc(&d_in,DIM*DIM*sizeof(float));
 cudaMalloc(&d_out,DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
  for (int j = 0; j < DIM; j++) {
   h_in[i + j*DIM] = value++;
  }
 }

 startClock("copy in");
 cudaMemcpy(d_in,h_in,DIM*DIM*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy in");

 startClock("compute");
 cudaTransposeRow<<<1024,1024>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");
  
 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeRow(float* out, float* in, int size) {
 int row = threadIdx.x;
 int col = blockIdx.x;
 
 out[col + row*size] = in[row + col*size];
} 
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One more optimization - global 
memory coalescing

§ Just like your CPU, the GPU is very happy to access 
consecutive addresses of the global memory
• We were very good about that for reading, but not very good 

for writing.
§ The big idea - cover the array with tiles 8x8, 16x16, or 

32x32. Read a tile into local memory. Then, write out 
in order to global. Lets try:
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Coalesced - .46 - a measly 20%
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 startClock("compute");

 int tileSize = 8;
 int tempMem = tileSize*tileSize*sizeof(float);
 dim3 blocks(128,128,1);
 dim3 threads(8,8);

 cudaTransposeCoalesce<<<blocks,threads,tempMem>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");
  
 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeCoalesce(float* out, float* in, int size) {

 __shared__ float shared[1024];

 // starting points inside the input data

 int iStart = blockDim.x*blockIdx.x;
 int jStart = blockDim.y*blockIdx.y;

 // let adjacent threads pick up adjacent items from input
 // transpose on the fly

 float data = in[iStart + threadIdx.x + (jStart + threadIdx.y)*size];
 shared[threadIdx.y + threadIdx.x*blockDim.x] = data;

 __syncthreads();

 // ok now put them back to out, but travel with the grain!

 int temp = jStart;
 jStart = iStart;
 iStart = temp;

 out[iStart + threadIdx.x + (jStart + threadIdx.y)*size] = shared[threadIdx.x + threadIdx.y*blockDim.y];
}
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Lessons from this example 

§ There are some real obvious optimizations with 
enormous payoffs

§ There are the more suble (ninja) optimizations with 
slightly better payoffs

§ Believe it or not, there are still a few more 
optimizations we can get for another 10-20% or so, 
but there is so much more to learn
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A Porting Example
§ I was brought a Fortran program - an early fork of a 

program called QuantumEspresso.
• It already had some self timing code inside and it identified the 

“hot spot” of the code to be the use of a Fast Fourier 
Transform (fft)

• This is famously a compute intensive operation but extremely 
useful for data analysis. There is an excellent library that does 
this called fftw (fastest fourier transform in the west) that has 
been ported to CUDA - so that it is somewhat, at least 
conceptually, compatible.
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FFTW vs cuFFT

§ FFTW
• Two steps

- First you create a “plan” - basically telling it how many data points 
there are and which direction you are computing (Xn -> xn or vice 
versa)

- Then you execute the plan. The execution of the plan has several 
more options depending upon how many arrays you have etc.

§ cuFFT
• Two steps (so far so good)

- First you create a plan which is much more complex, describing both 
the problem and the setup of data on the device

- Next you execute the plan with very few parameters
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Back to Quantum Espresso

§ They have a very sparse 3-D array of points 
(72x72x72) that they have to transform
• Since it is sparse, and the FFT is an expensive operation, they 

spend a considerable amount of time locating lines and planes 
within the 3D array that are all zeros and for which you do not 
have to compute the FFT. This was a big win for the CPU 
version of the code, shown below
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        do k = 1, nz
           do j = 1, ny
              jj = j + ( k - 1 ) * ldy
              ii = 1 + ldx * ( jj - 1 )
              if ( do_fft_x( jj ) == 1 ) THEN
                call FFTW_INPLACE_DRV_1D( bw_plan( 1, ip),m,f( ii ),incx1,incx2 )
                calls = calls + 1
              endif
           enddo
        enddo
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Results:

75

Non-Cuda Naive Cuda Hey - processors are 
free Cuda

Full 
Code

42.90 sec 77.1 sec 21.04 sec

First 
FFT

18.14 sec 38.03 sec 8.36 sec

Second 
FFT

17.82 sec 34.15 sec 6.8 sec
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Porting Notes

§ The golden asset - someone who knows the code.
• If someone can tell you that this routine “maps” or “reduces” or 

“scans” or ... The battle is over!
§ Don’t overlook obvious improvements to start. Almost 

anyone looking at old code can find some 
performance improvements.
• Fortran - take advantage of Matrix operations - they are way 

faster than doing them by hand
• C - look out for bad memory use patterns.
• Use library functions (QE had already been sped up by about 

20% using the library fftw rather than the home-grown version)

§ MEASURE - DON’T GUESS!!!
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Wrap up 

§ CUDA is different, but it has its charms and learning it 
will help with
• learning openGL
• appreciating with the directive based languages have to do
• most everything we learned about algorithms applies to 

openMP, MPI, Bluegene, etc. The details change, the weights 
change, but the concepts go way back to Connection Machine 
days (early 1980s)

• It (and its co-frameworks) are disruptive technologies - THEY 
MUST BE PAID ATTENTION TO!

77

Monday, August 26, 13



Resources - 1

§ Web sites
• http://nvidia.com/object/cuda_home_new.html

- Understand that CUDA is an nvidia product (free, not open source) 
and works only on nvidia hardware

• http://www.khronos.org/opencl/

§ MOOCs
• Udacity (www.udacity.com) has an outstanding course that is 

available - Introduction to Parallel Programming. David Luebke 
and John Owens are master teachers.

• Coursera (www.coursera.org) has a course called 
“Hetergeneous Parallel Programming” that is a bit more 
challenging
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Resources - 2

§ Books (Note, all of the titles are available via Safari 
Books Online available at a reasonable cost through 
BNL & maybe also through ACM Digital Library)
• CUDA Programming/A Developer’s Guide to Parallel 

Computing with GPUs, Shane Cook, 2013, Morgan 
Kaufmann. 
- Great for non-gear heads

• Programming Massively Parallel Processors/A Hands-on 
Approach, David B. Kirk & Wen-mei W. Hwu. Second Edition, 
2013, Morgan Kaufmann.
- Considerably drier read then the above. Lots of typos. :-(

• GPU Computing Gems/Jade Edition, Wen-Mei W. Hwu 
editor. 2012 Morgan Kaufmann.
- An outstanding collection of 36 papers. You will almost certainly find 

something of interest.
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Questions 
§ What topics for future tutorials - write to me - 

drs@bnl.gov
• Deep dive into nvidia hardware & maximizing performance
• Parallel patterns
• IDEs, profilers, debuggers
• Fortran & cuda
• Python & cuda
• OpenCL
• OpenACC
• Intel/Phi
• CUDA libraries
• Thrust (C++ STL for CUDA)
• Porting non-parallel code to CUDA
• Porting parallel code to CUDA
• Multiple GPUs
• Streams
• System design
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