
GPGPU Programming

An Introduction to the Technology and
Programming Tutorial

Dave Stampf
CSC/BNL

drs@bnl.gov
August 23, 2013

Slides & Software at github.com/davestampf/GPUTalk

Monday, August 26, 13

mailto:drs@bnl.gov
mailto:drs@bnl.gov

It’s all about Performance
(slashdot.org)
"I am an intermediate-level programmer who works mostly in C# NET. I
have a couple of image/video processing algorithms that are highly
parallelizable — running them on a GPU instead of a CPU should result in
a considerable speedup (anywhere from 10x times to perhaps 30x or 40x
times speedup, depending on the quality of the implementation). Now here
is my question: What, currently, is the most painless way to start playing
with GPU programming? Do I have to learn CUDA/OpenCL — which
seems a daunting task to me — or is there a simpler way? Perhaps a Visual
Programming Language or 'VPL' that lets you connect boxes/nodes and
access the GPU very simply? I should mention that I am on Windows, and
that the GPU computing prototypes I want to build should be able to run on
Windows. Surely there must a be a 'relatively painless' way out there, with
which one can begin to learn how to harness the GPU?"

2

Monday, August 26, 13

and some responses:

§ “GPU programming is painful. A painless introduction
doesn't capture the flavor of it.”

§ “Since the whole point of GPU programming is
efficiency, don't even think about VBing it. Or
Pythoning it. Or whatever layer of a shiny crap might
seem superficially appealing to you. Learn OpenCL
and do the job properly.”

3

Monday, August 26, 13

and a another (talking about a class)...

4

“We were building little throw-away matrix multiply programs - for which
we were given horribly inefficient and barely functional source to start
with. The challenge was to make it run as fast as possible, with extra
credit going to the fastest implementation. It turns out to accomplish this
you basically need to understand every tier of the memory architecture
of CUDA, the process by which it reads in cache lines to avoid collisions,
how to optimize the read/write patterns, how the job would be split up
among the GPU's (and the parameters used for the splitting), and
basically every nit-picking detail of how the hardware actually runs. This
runs counter to the level of abstraction that most CS majors are used to
dealing with - if we wanted to do hardware we would've gone the EE or
CE route - but if you want to truly want to grok CUDA, you have to
become a hardware wiz. Otherwise you'll always be stuck wondering
why you can never seem to get the level of speedup that the
benchmarks suggest should be possible.”

Monday, August 26, 13

But my favorite ;-)

5

“Yeah, it would be like S&M without the pain . . . cute,
but something essential is missing from the experience.

Heidi Klum has a TV show call "Germany's Next Top
Model". She basically gets all "Ilsa, She-Wolf of the SS"
on a bunch of neurotic, anorexic, pubescent girls,
teaching them how a top model needs to suffer.

Heidi Klum would make a good GPU programming
instructor.”

Monday, August 26, 13

So, why the pain?

§ A CPU’s (single core) performance has stagnated for
the past 10(!!!) years.

§ GPU/Coprocessor technologies offer a disruptive
opportunity to get back on the exponential track.

§ While the imaging industry (Adobe, Apple, etc.) has
been using these technologies for years, the scientific
applications are late to the game - techniques are not
fully utilized by scientific programmers.

6

Parallel programming IS mainstream programming!

Monday, August 26, 13

Classic (by now) Performance Graph
(Source: “The Free Lunch is Over: A Fundamental Turn Toward Concurrence in Software” by

Herb Sutter (DDJ 3/2005))

7

Monday, August 26, 13

So, if you are a computer engineer,
where do you spend your xistor
budget?

- CISC
- reordering
- data & instruction

cache
- hyper-threading
- several cores
- Strives for minimizing

latency

- basically solve c = Ax + b

- many simple processors each
with 1 thread

- One instruction (program)
queue

- many, many cores

- Strives for maximizing
bandwidth

CPU GPU

8

Monday, August 26, 13

Latency vs Bandwidth
§ Classic example
• Low Latency/low bandwidth

- race car with 1 rider travels 2400 miles @ 100 mph. Net delivery of
passengers = 1 every 24 hours. Pretty low latency. You call up your
friend and she arrives 24 hours later.

• high latency/high bandwidth
- bus with 80 people traveling the same distance @ 50mph. The first

person arrives 48 hours later, but she has a whole orchestra with her!

§ Classical CPUs deliver low latency - they want to get
the first answer to you as quickly as possible

§ For the GPU - getting the top left pixel of a screen is
not useful if the bottom right pixel of the screen
arrives too late. You want all of the pixels as quickly
as possible

§ To program GPUs, YOU MUST UNDERSTAND THIS!

9

Monday, August 26, 13

Your options (in increasing pain and
performance):

§ Ignore the hype (see graph - this is not an option)
§ Buy COTS software (think Adobe) and relax
§ Use libraries (cu-fftw, cublas, thrust, etc.)
• I’ll discuss one project using cufftw today

§ Use directives (openACC, openMP, etc.)
• Perhaps study more at the next tutorial...

§ Use (naively) openCL, CUDA
• You’ll have this skill (and more) by the end of the morning

§ Buckle down and study the hardware
• A little today, but much, much more study is required

§ Buckle down and learn parallel patterns
• A little today, but much, much more study is required

10

Monday, August 26, 13

Today’s Plan

§ Overview of CUDA
• Setup
• Hardware model
• Programming model

§ Some real code illustrating:
• map
• reduce (e.g., numerical integration)
• scan (e.g., prefix sum/max/min/...)
• Matrix Transpose (if time permits)

§ Porting techniques (ongoing study)
• fftw

§ Resources
11

Monday, August 26, 13

Reality Check
§ Many schools (and MOOCs!) have semester courses on these topics

while we have 3 hours.
• I’m going to resist taking the conversation down a path that loses 50%

of the attendees or that really requires it own 3 hours to cover
properly.

• I will be taking some simplified shortcuts aimed to maximize the topics
we can cover.

• I won’t tackle the questions of hardware system design - that deserves
way more than 3 hours!

§ My goals:
• You will have a better idea of what CUDA is
• You will have a realistic idea of the work involved in developing

parallel programs and porting non-parallel code to perform well
• You will know where to get more information about hardware and

software
• You will know what areas we can explore in future tutorials
• You can listen intelligently to the afternoon talks

12

Monday, August 26, 13

Overview - setup

13

Monday, August 26, 13

Overview - setup

§ Make sure your system supports the CUDA SDK (see
web site)

§ Download the SDK from nvidia.com
§ Install by reading their directions (it changes so it is

not worth recording here)
§ Set up your PATH to include the CUDA compilers and

other binaries.
§ Be sure to browse the contents of
• .../cuda/doc
• .../cuda/samples - seriously - you can learn a lot

14

Monday, August 26, 13

Overview Hardware

15

Monday, August 26, 13

Overview - Hardware

§ Intel systems seem to be evolving at about a 2 year
cycle

§ nVidia systems are evolving at the same (non-
synchronized) pace.

§ Since this is a tutorial, we are going to keep this at a
high level - when you get access to a system, you
can learn all of the relevant details.

§ If you are designing a system - you need more than
this tutorial!

16

Monday, August 26, 13

A Typical System (Sandy Bridge)

17

Source: CUDA Programming A Developer’s Guide to Parallel Computing with GPUs by Shane Cook, Morgan Kaufmann

Monday, August 26, 13

Two instances

§ GeForce CTX480
• 448 CUDA cores
• Memory

- 1G global memory
- 320 bit interface width
- 134GB/s

• Cost - ~$500 from amazon.com

§ Tesla C2050
• 448 CUDA cores
• Memory

- 3G global
- 384 bit interface width
- 144 GB/s

• Cost - $1350 from amazon.com

18

Monday, August 26, 13

Block Diagram of GPU (G80/GT200)

19

Source: CUDA Programming A Developer’s Guide to Parallel Computing with GPUs by Shane Cook, Morgan Kaufmann

Monday, August 26, 13

Programming Interlude - Discovery-1

20

/*
 * Just how many cuda enabled devices on this machine?
 * Also, what are their properties?
 *
 * Note - EVERY cuda call returns an error value. While
 * this is vital in real code, it gets in the way of
 * tutorial code. I'm showing it here for cudaGetDeviceCount
 * but will omit it for the rest of the tutorial.
 */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {

 int numberOfDevices;
 cudaError_t err;

 err = cudaGetDeviceCount(&numberOfDevices);
 if (err != cudaSuccess) {
 fprintf(stderr,"fail - cudaGetDeviceCount %d\n",err);
 exit(1);
 }
 printf("Number of cuda devices = %d\n",numberOfDevices);

Monday, August 26, 13

Programming Interlude - Discovery-2

21

 /* the cudaDeviceProp struct is fairly large - read about it in the
 docs. */
 for (int dev = 0; dev < numberOfDevices; dev++) {
 cudaDeviceProp props;
 cudaGetDeviceProperties(&props,dev);
 printf("Device # %d\n",dev);
 printf(" name = %s\n",props.name);
 printf(" version = %d.%d\n",props.major,props.minor);
 printf(" total global memory = %ld\n",props.totalGlobalMem);
 printf(" shared Memory/Block = %ld\n",props.sharedMemPerBlock);
 printf(" registers/block = %d\n",props.regsPerBlock);
 printf(" warp size = %d\n",props.warpSize);
 printf(" Max threads/block = %d\n",props.maxThreadsPerBlock);
 printf(" Max Threads Dim = %d x %d x %d
\n",props.maxThreadsDim[0],
 props.maxThreadsDim[1],props.maxThreadsDim[2]);
 printf(" Max Grid Size = %d x %d x %d\n",props.maxGridSize[0],
 props.maxGridSize[1],props.maxGridSize[2]);
 printf(" Multi-processor count = %d
\n",props.multiProcessorCount);
 printf(" Max Threads/multiprocessor = %d
\n",props.maxThreadsPerMultiProcessor);
 }
 return 0;
}

Monday, August 26, 13

Programming Interlude - output

22

drs@gpu2:~/Talk$./cuda-devices
Number of cuda devices = 4
Device # 0
 name = Tesla C2050
 version = 2.0
 total global memory = 2817982464
 shared Memory/Block = 49152
 registers/block = 32768
 warp size = 32
 Max threads/block = 1024
 Max Threads Dim = 1024 x 1024 x 64
 Max Grid Size = 65535 x 65535 x 65535
 Multi-processor count = 14
 Max Threads/multiprocessor = 1536

Monday, August 26, 13

Overview - Software

23

Monday, August 26, 13

Programming CUDA
§ In the bad old days, programming your GPU meant that you

had to cast your problem as a graphics manipulation. CUDA
(and openCL, etc.) permit you to treat the device as a more-
or-less general purpose computer.

§ Your programming of CUDA requires that you write code for
both the host (e.g., the Intel CPU) and the device - the GPU.

§ Functions that run on the device are called “kernels”
§ Both host and device code is written in CUDA-C, a

(syntactically) minor extension of C (basically a handful of
additional keywords and a strange calling syntax)

§ The host code does all of the setup and breakdown and
“launches” kernels.

§ The kernels, once launched run asynchronously
§ Data xfers are synchronous by default

24

Monday, August 26, 13

The Basic Cuda Dance (host’s view)

1. Allocate space on the device
2. Copy data from the host to the device
3. Launch one or more kernels
4. Copy data from the device back to the host
5. Free space on the device

25

Monday, August 26, 13

The Basic Cuda Dance (Kernel view)

§ A kernel’s code describes what one thread does
(think the “run” method of the Thread class in Java)

§ Each thread that is created when a kernel is launched
has a (unique) number (zero based index) and each
thread magically knows what its number is.

§ Frequently, when a computation produces an array of
data as its result, each thread will be used to
compute just 1 element of the result.

§ So, basically, you replace an external for loop with a
ton of threads

26

Monday, August 26, 13

The code structure resembles simply
unrolling loops

27

for (int i = 0; i < n; i++)
{
/compute output element i
result[i] = ...

}

get threadId
result[threadId] = ...

get threadId
result[threadId] = ...

get threadId
result[threadId] = ...

get threadId
result[threadId] = ...

...

Non-CUDA

CUDA

But you only have to
write 1 of these!

Monday, August 26, 13

Overview - Programming

§ The “native” way to program CUDA devices is by
using a variant of C.
• These files typically have the extension “.cu”

§ These files are compiled by the “nvcc” program that
• picks out the CUDA kernels and compiles to “PTX” code (the

machine code of the GPU)
• passes the host code onto the standard C compiler for your

system.

28

Monday, August 26, 13

Overview - Programming Model
First Pass - Threads

§ A thread executes the instructions in your program.
§ In CUDA, threads are cheap and are allocated by the

1000’s if not 1,000,000’s.
§ Threads have a small amount of local (private)

memory (c not m)
§ If your program computes an array as output, you

typically have 1 thread compute 1 element of the
array.

§ You need to think - “I have to write a program that
only computes 1 element of the answer.

29

Monday, August 26, 13

Overview - Programming Model
First Pass - Blocks
§ A Block is a bunch of threads (up to 1024 on modern

devices)
§ When you launch a kernel, you create 1 or more

blocks.
• It is your choice for the number of blocks and the number of

threads/block - you choose to fit the problem & for
performance

§ The block is the unit of scheduling for the GPU
• It is one reason why the GPU is so scalable
• They can run in any order in parallel or sequentially
• So, on a small GPU, you might run 1 block after another while

on a larger GPU you might run a dozen or more in parallel.

§ Blocks cannot communicate with each other directly
(only indirectly through global memory)

30

Monday, August 26, 13

Block Diagram of GPU (G80/GT200)

31

Source: CUDA Programming A Developer’s Guide to Parallel Computing with GPUs by Shane Cook, Morgan Kaufmann

Monday, August 26, 13

32

Finally, A Data Access Pattern - the
Map

xn-1x3x2x1x0 ...

yn-1y3y2y1y0 ...

Input Array

Output Array

process

Monday, August 26, 13

The Map in code

33

for (int i = 0; i < n; i++)
{
y[i] = f(x[i]);

}

Sequential Parallel

y[threadId] = f(x[threadId])

Quick quiz: If you have enough threads to cover the
array, what is the “O” speed of these two algorithms?

Monday, August 26, 13

Code Interlude - sequential map

34

float square(float x) {
 return x*x;
}

int main(int argc, char** argv) {

 if (argc < 2) {
 printf("Usage: %s #-of-floats\n",argv[0]);
 exit(1);
 }
 int size = atoi(argv[1]);
 printf("size = %d\n",size);

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(size*sizeof(float));
 h_out =(float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
 h_in[i] = i;
 }

 startClock("compute");
 nonCudaMap(h_out,h_in,size);
 stopClock("compute");

 for (int i = 0; i < size; i++) {
 printf("%f -> %f\n",h_in[i],h_out[i]);
 }

 free(h_in);
 free(h_out);

 printClock("compute");
}

void nonCudaMap(float* out, float* in, int size) {
 for (int i = 0; i < size; i++) {
 out[i] = square(in[i]);
 }
}

Monday, August 26, 13

Code Interlude - CUDA map (host)

35

int main(int argc, char** argv) {

 if (argc < 2) {
 printf("Usage: %s #-of-floats\n",argv[0]);
 exit(1);
 }
 int size = atoi(argv[1]);
 printf("size = %d\n",size);

 cudaDeviceProp props;
 cudaGetDeviceProperties(&props,0);
 if (size > props.maxThreadsPerBlock) {
 fprintf(stderr,"Max size for the small model is %d\n",
 props.maxThreadsPerBlock);
 exit(1);
 }

 void *d_in; // device data
 void *d_out;
 float *h_in; // host data
 float *h_out;

 cudaMalloc(&d_in,size*sizeof(float));
 cudaMalloc(&d_out,size*sizeof(float));
 h_in = (float*) malloc(size*sizeof(float));
 h_out =(float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
 h_in[i] = i;
 }

 startClock("copy data to device");
 cudaMemcpy(d_in,h_in,size*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy data to device");

 startClock("compute");

 // use one block and size threads

 map<<<1,size>>>((float*) d_out,(float*) d_in,size);
 cudaThreadSynchronize(); // forces wait for map to complete

 stopClock("compute");

 startClock("copy data to host");
 cudaMemcpy(h_out,d_out,size*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy data to host");

 for (int i = 0; i < size; i++) {
 printf("%f -> %f\n",h_in[i],h_out[i]);
 }

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy data to device");
 printClock("compute");
 printClock("copy data to host");
}

Monday, August 26, 13

Code Interlude - CUDA map (device)

36

/*
 * squaring map kernel that runs in 1 block
 */

/*
 * runs on and callable from the device
 */

__device__ float square(float x) {
 return x*x;
}

/*
 * runs on device, callable from anywhere
 */

__global__ void map(float* out, float* in, int size) {
 int index = threadIdx.x;
 if (index >= size) return;
 out[index] = square(in[index]);
}

Monday, August 26, 13

Code Interlude - Timings for Map

37

Monday, August 26, 13

Code Interlude - Timings for Map

37

Size of array Sequential Time
in micro seconds

CUDA Data
Copy Time in
micro seconds

Cuda Compute
Time in micro
seconds

256 4 42 37
512 7 42 37
1024 11 44 38

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Blocks, each with 1024 or fewer threads...

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Blocks, each with 1024 or fewer threads...

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Blocks, each with 1024 or fewer threads...

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Blocks, each with 1024 or fewer threads...

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

So, How to deal with arrays > 1024?

38

A really long array

Blocks, each with 1024 or fewer threads...

Then, (somehow) each kernel knows which block it
belongs to and which thread within each block, so it can
easily compute it’s index into the array.

Monday, August 26, 13

Large Map Details:

39

Host Code
// use max threads/block and the required # of blocks

 int numBlocks = ceil(1.0*size/props.maxThreadsPerBlock);
 map<<<numBlocks,props.maxThreadsPerBlock>>>((float*)
d_out,(float*) d_in,size);

Kernel Code
__global__ void map(float* out, float* in, int size) {
 int index = blockDim.x*blockIdx.x + threadIdx.x;
 if (index >= size) return;
 out[index] = square(in[index]);
}

Monday, August 26, 13

Code Interlude - Timings for Map

40

Size of array Sequential Time
in micro seconds

CUDA Data
Copy Time in
micro seconds

Cuda Compute
Time in micro
seconds

256 4 42 37
512 7 42 37
1024 11 44 38
2048 20 49 41
4096 41 57 41
8192 77 78 41
16384 157 111 42
65536 612 225 62

Monday, August 26, 13

Code Interlude - Timings for Map

40

Size of array Sequential Time
in micro seconds

CUDA Data
Copy Time in
micro seconds

Cuda Compute
Time in micro
seconds

256 4 42 37
512 7 42 37
1024 11 44 38
2048 20 49 41
4096 41 57 41
8192 77 78 41
16384 157 111 42
65536 612 225 62

Quick quiz: Why did the compute time jump up for the
last trial?

Monday, August 26, 13

Porting Strategies
§ There are 3 main issues when porting code
• Does it improve the performance?
• Does it give the same (hopefully correct) answer?
• You probably do NOT want to irreparably modify the program

to run on a GPU so that it cannot run on a CPU any longer
§ You should measure performance by profiling
§ This leads to 4 types of runs
• cpu (production)
• cpu with profiling
• gpu (production)
• gpu with profiling
• cpu and gpu with coherency check

§ I’ll assume that profiling is external to the program
(compiler switch)

41

Monday, August 26, 13

Modifying the program

42

{
cpu only code

}

if (cpuOnly) {
run cpu code

} else if (gpuOnly) {
 run gpu code
} else { // both
capture and copy input state
run cpu code on original input state
run gpu code on copied input state producing separate output
state
compare two output states for coherency and report discrepancies

}

Monday, August 26, 13

Porting Issues

§ Wildly differing answers probably means that you
have messed up with synchronization. (Especially if
the results and differently different each time your
run.) GPUs are NOT flakey!

§ Small differences might be explained by the differing
ways CPU and GPUs do arithmetic, especially the
FMA (fused multiply add) instruction of the GPU
where it computes round(a*b+c) rather than
round(round(a*b) + c).
• For modern GPUs, try nvcc --fmad=false to see if it helps with

coherency

43

Monday, August 26, 13

Memory Allocation on the Device

§ C
• void* d_data;

cudaMalloc(& d_data, numberOfBytes);
- This allocates the requested numberOfBytes on the device in global

memory returning an error if it fails. The value returned into d_data is
opaque.

- DO NOT dereference d_data on the host! I prefer using void* so as to
have any de-referencing fail.

- It is a good idea to flag device data with d_

§ Fortran
• float, device : d_data[1000]

44

Monday, August 26, 13

Memory Deallocation

§ C
• void* d_data;

cudaFree(d_data);
- returns error if failure.

§ Fortran
• automatic

45

Monday, August 26, 13

Data Movement
§ C
• void* d_data;

float* h_data;
cudaMemcpy(d_data,h_data,numberOfBytes,
 cudaMemcpyHostToDevice);
//...

cudaMemcpy(h_data,d_data,numberOfBytes,
 cudaMemcpyDeviceToHost);

• Again, you should always check for errors
• You can also copy host to host and device to device

§ Fortran
• d_data = h_data

...
h_data = d_data

46

Monday, August 26, 13

Device Selection

§ cudaSetDevice(deviceNum);
• All further calls to cudaMalloc, cudaFree, cudaMemcpy, etc.

will be directed toward that device.
• This could be a major win for you if you have multiple

independent computations.

47

Monday, August 26, 13

Terminology

§ There are a number of terms that are used
throughout CUDA that have to be assimilated into
your way of thinking.
• Kernel
• Thread
• Block
• Grid
• Launch

§ Some like to think top down, some bottom up - we will
do both

48

Monday, August 26, 13

Kernel

§ A Kernel is a bit of code (function) that describes
what 1 thread does.

§ A Kernel has a few “magic” variables that we will
discuss in a few slides.

§ The parameters passed as arguments to a kernel are
either simple data types (int, float, etc.) or pointers to
global memory areas that had been allocated by the
host program.

§ A Kernel has a limited amount of local (register)
memory.

49

Monday, August 26, 13

Thread

§ A thread runs the code in a Kernel
§ Local data within a Kernel is private to each thread.
§ All threads share the global memory (and so have to

be careful to cooperate)
§ All threads in a block share the “shared” memory

(and so have to be careful to cooperate).
§ Threads do not have access to other blocks shared

memory.

50

Monday, August 26, 13

Blocks

§ A Block “has-a” bunch of threads
• for current GPUs, the maximum number of threads varies from

512 to 2048.
• Sometimes, it is useful to the programmer to view the threads

linearly, as a 2-d array of threads (think about working on an
array or image) or as a 3-d array of threads.

§ A Block is the unit of scheduling for the GPU
• That is, a Block is given to a SM for processing. Its code runs

until complete. (An SM can run more than 1 block at a time.)
§ A Block has some memory (typically in the “k” range)

that it shares among the threads.

51

Monday, August 26, 13

Grid

§ When you launch a Kernel, you specify how many
blocks to create and how many threads are in each
block.

§ Sometimes, it suits the programmer to view these
blocks as a linear collection, or as a 2-d array (think
images) or even as a 3-d array.

§ Every block knows its position within the grid

52

Monday, August 26, 13

And the Launch
§ kernelName<<<grid,block,sizeOfSharedData>>>(params);
• where grid is either an int (1-D grid of blocks) or a dim3 type

- e.g. dim3 grid(10,10,100)
• block is either an int (1-D array of threads) or a dim3 type

- e.g. dim3 block(16,16,2)
• and the 3rd (optional) parameter in the <<<>>> is the number of bytes

per block that will be shared.

53

Monday, August 26, 13

An finally, back to the thread
§ Each thread (which runs in a kernel) has some magic

data in the form of structs.
§ gridDim.x, gridDim.y, gridDim.z
• Blocks are arranged in a 3-d Grid with the above dimensions
• Every thread sees the exact same values

§ blockIdx.x, blockIdx.y, blockIdx.z
• For each thread, this is the particular block that the thread

belongs to
§ blockDim.x, blockDim.y, blockDim.z
• Threads in every block are arranged in a 3-d array with the

above dimensions
• Every thread sees the exact same values

§ threadIdx.x, threadIdx.y, threadIdx.z
• For each thread, this is the position of the thread within the

block
54

Monday, August 26, 13

Types of memory
§ Global
• Largest in size (3G)
• Slowest in access (100’s of clock cycles)
• Widest memory width (384 bits/48 bytes/12 floats)
• accessible to all threads

§ Shared
• Rather tight (48K)
• Much faster than Global
• Segmented and connected to the processors by a crossbar

switch (need to be aware of contention)

§ Register
• Very tight (32K)
• Single cycle access
• Private to thread

55

Monday, August 26, 13

Another Data Pattern - Reduction

§ The simplest example of reduction is to compute the
sum of the elements in an array. (e.g., numerical
integration). The idea is that all of the elements of the
array need to be read and that 1 number is created.

§ While I’ll use addition in the example, it will work with
any associative binary operator (+, *, max, min, etc.)

§ The serial version is 0(n)

56

total = 0;
for (int i = 0; i<n; i++) {

total += data[i];
}

Monday, August 26, 13

Parallel version

§ The parallel version makes use of the associative law
that (((a+b) + c) + d) is the same as (a+b) + (c + d).
• The first expression is extremely sequential
• The second is much more parallel. One can compute a+b

while some other processor computes (c+d).

§ In our example, we sum up 2**10 items. For the first
pass, 1024 blocks of 1024 threads sums up each
block and places the answer in an intermediate area.
Then we do it again to the intermediate area.

57

Monday, August 26, 13

Serial Version:

58

int main(int argc, char** argv) {

 if (argc < 2) {
 printf("Usage: %s #-of-floats\n",argv[0]);
 exit(1);
 }
 int size = atoi(argv[1]);
 printf("size = %d\n",size);

 float *h_in;
 float h_out;

 h_in = (float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
 h_in[i] = 1;
 }

 startClock("compute");
 nonCudaReduce(&h_out,h_in,size);
 stopClock("compute");

 printf("The sum is %f\n",h_out);

 free(h_in);

 printClock("compute");
}

void nonCudaReduce(float* out, float* in, int size) {
 *out = 0.0;
 for (int i = 0; i < size; i++) {
 *out += in[i];
 }
}

Monday, August 26, 13

CUDA Version - Host Side

59

int main(int argc, char** argv) {

 int size = 1024*1024;
 printf("size = %d\n",size);

 void *d_in; // device data
 void *d_mid; // device data - middle results
 void *d_out; // device data - the answer

 float *h_in; // host data
 float h_out;

 int numBlocks = 1024;

 cudaMalloc(&d_in,size*sizeof(float));
 cudaMalloc(&d_mid,numBlocks*sizeof(float));
 cudaMalloc(&d_out,sizeof(float));

 h_in = (float*) malloc(size*sizeof(float));

 for (int i = 0; i < size; i++) {
 h_in[i] = 1;
 }

 startClock("copy data to device");
 cudaMemcpy(d_in,h_in,size*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy data to device");

 startClock("compute");

 // use max threads/block and the required # of blocks AND
 // ask for some shared memory

 reduce<<<1024,1024,1024>>>((float*) d_mid,(float*) d_in,size);
 reduce<<<1,1024,1024>>>((float*)d_out,(float*)d_mid,1024);
 cudaThreadSynchronize();

 stopClock("compute");

 startClock("copy data to host");
 h_out = -17;
 cudaMemcpy(&h_out,d_out,sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy data to host");

 printf("The total is %f\n",h_out);
 free(h_in);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy data to device");
 printClock("compute");
 printClock("copy data to host");
}

Monday, August 26, 13

Cuda Version - Kernel

60

__global__ void reduce(float* out, float* in, int size) {
 __shared__ float temp[1024];

 int index = blockDim.x*blockIdx.x + threadIdx.x;
 int myId = threadIdx.x;

 if (index >= size) return;

 // move data to shared memory for speed

 temp[myId] = in[index];
 __syncthreads();

 int stride = blockDim.x/2;
 while (stride >= 1) {
 if (myId < stride) {
 temp[myId] += temp[myId + stride];
 }
 __syncthreads();
 stride = stride/2;
 }
 out[blockIdx.x] = temp[0];
}

Monday, August 26, 13

Timing

§ For 1,000,000 elements
• Serial Code 4.775 ms
• Cuda 1.148 (including copy - .7ms is the actual computation)

§ This can be greatly improved if the operator is more
complex or if the input data can be computed on the
device!

§ A deeper study of the hardware can also have a
significant impact on the timing. (to be continued at a
later date!)

61

Monday, August 26, 13

Another Data Pattern - Scanning
§ A “scan” of an array is when you replace each

element of an array by the sum of all of the elements
before it plus itself (think turning a probability density
into a distribution).

§ This works with all binary associative operators as
well (+, *, max, min, etc.)

§ Example - the array [1, 7, -3, 2, 9, -4] is transformed
to [1, 8, 5, 7, 16, 12].

§ Applications range from sorting to checkbook
balancing, to management of resources, etc.

§ It SEEMS like an intractable serial problem, but it
isn’t! (See the white board!)

62

Monday, August 26, 13

The point of all of this...
§ When I hear colleagues or the typical web curmudgeon

make statements like:

“I don’t know why they ask me about design patterns or O
notation at job interviews ... you just don’t need it ... “

It just drives me nuts. These are the atoms of our
business. These form the periodic table for programmers.

The good people at nVidia will gladly tell you that the key
to programming CUDA well is to understand parallel
programming, its patterns and its algorithms.

This will get you 90% to peak performance. If you need
the next 10%, you will have to learn the hardware.

63

Monday, August 26, 13

One more pattern for the road -
transpose

§ This isn’t so much a pattern as a Kata - a routine that
one performs to sharpen your skills - to build muscle
memory - to free your mind to be able to work on the
big picture. (And it is a lot of fun to make things work
faster!)

§ The problem: Give a 1024 by 1024 array - transpose
it. A(i,j) -> A(j,i).

64

Monday, August 26, 13

Serial Code will run in 11.6ms.

65

#define DIM 1024

int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
 for (int j = 0; j < DIM; j++) {
 h_in[i + j*DIM] = value++;
 }
 }

 startClock("compute");
 nonCudaTranspose(h_out,h_in,DIM);
 stopClock("compute");

 free(h_in);
 free(h_out);

 printClock("compute");
}

void nonCudaTranspose(float* out, float* in, int size) {
 for (int i = 0; i < size; i++) {
 for (int j = 0; j < size; j++) {
 out[j + i*size] = in[i + j*size];
 }
 }
}

Monday, August 26, 13

First Try - no threading - time 367ms

66

#define DIM 1024

int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 void *d_in;
 void *d_out;

 cudaMalloc(&d_in,DIM*DIM*sizeof(float));
 cudaMalloc(&d_out,DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
 for (int j = 0; j < DIM; j++) {
 h_in[i + j*DIM] = value++;
 }
 }

 startClock("copy in");
 cudaMemcpy(d_in,h_in,DIM*DIM*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy in");

 startClock("compute");
 cudaTransposeSerial<<<1,1>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");

 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeSerial(float* out, float* in, int size) {
 for (int i = 0; i < size; i++) {
 for (int j = 0; j < size; j++) {
 out[j + i*size] = in[i + j*size];
 }
 }
}

Monday, August 26, 13

Second Try - 1 thread/row - 3.4ms (100x!)

67

int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 void *d_in;
 void *d_out;

 cudaMalloc(&d_in,DIM*DIM*sizeof(float));
 cudaMalloc(&d_out,DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
 for (int j = 0; j < DIM; j++) {
 h_in[i + j*DIM] = value++;
 }
 }

 startClock("copy in");
 cudaMemcpy(d_in,h_in,DIM*DIM*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy in");

 startClock("compute");
 cudaTransposeRow<<<1,1024>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");

 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeRow(float* out, float* in, int size) {
 int row = threadIdx.x;

 for (int j = 0; j < size; j++) {
 out[j + row*size] = in[row + j*size];
 }
}

Monday, August 26, 13

Third - fully parallized - .5 ms (10x more!)

68

int main(int argc, char** argv) {

 float *h_in;
 float *h_out;

 h_in = (float*) malloc(DIM*DIM*sizeof(float));
 h_out =(float*) malloc(DIM*DIM*sizeof(float));

 void *d_in;
 void *d_out;

 cudaMalloc(&d_in,DIM*DIM*sizeof(float));
 cudaMalloc(&d_out,DIM*DIM*sizeof(float));

 int value = 1;
 for (int i = 0; i < DIM; i++) {
 for (int j = 0; j < DIM; j++) {
 h_in[i + j*DIM] = value++;
 }
 }

 startClock("copy in");
 cudaMemcpy(d_in,h_in,DIM*DIM*sizeof(float),cudaMemcpyHostToDevice);
 stopClock("copy in");

 startClock("compute");
 cudaTransposeRow<<<1024,1024>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");

 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeRow(float* out, float* in, int size) {
 int row = threadIdx.x;
 int col = blockIdx.x;

 out[col + row*size] = in[row + col*size];
}

Monday, August 26, 13

One more optimization - global
memory coalescing

§ Just like your CPU, the GPU is very happy to access
consecutive addresses of the global memory
• We were very good about that for reading, but not very good

for writing.
§ The big idea - cover the array with tiles 8x8, 16x16, or

32x32. Read a tile into local memory. Then, write out
in order to global. Lets try:

69

Monday, August 26, 13

Coalesced - .46 - a measly 20%

70

 startClock("compute");

 int tileSize = 8;
 int tempMem = tileSize*tileSize*sizeof(float);
 dim3 blocks(128,128,1);
 dim3 threads(8,8);

 cudaTransposeCoalesce<<<blocks,threads,tempMem>>>((float*)d_out,(float*)d_in,DIM);
 cudaThreadSynchronize();
 stopClock("compute");

 startClock("copy out");
 cudaMemcpy(h_out,d_out,DIM*DIM*sizeof(float),cudaMemcpyDeviceToHost);
 stopClock("copy out");

 free(h_in);
 free(h_out);
 cudaFree(d_in);
 cudaFree(d_out);

 printClock("copy in");
 printClock("compute");
 printClock("copy out");
}

__global__ void cudaTransposeCoalesce(float* out, float* in, int size) {

 __shared__ float shared[1024];

 // starting points inside the input data

 int iStart = blockDim.x*blockIdx.x;
 int jStart = blockDim.y*blockIdx.y;

 // let adjacent threads pick up adjacent items from input
 // transpose on the fly

 float data = in[iStart + threadIdx.x + (jStart + threadIdx.y)*size];
 shared[threadIdx.y + threadIdx.x*blockDim.x] = data;

 __syncthreads();

 // ok now put them back to out, but travel with the grain!

 int temp = jStart;
 jStart = iStart;
 iStart = temp;

 out[iStart + threadIdx.x + (jStart + threadIdx.y)*size] = shared[threadIdx.x + threadIdx.y*blockDim.y];
}

Monday, August 26, 13

Lessons from this example

§ There are some real obvious optimizations with
enormous payoffs

§ There are the more suble (ninja) optimizations with
slightly better payoffs

§ Believe it or not, there are still a few more
optimizations we can get for another 10-20% or so,
but there is so much more to learn

71

Monday, August 26, 13

A Porting Example
§ I was brought a Fortran program - an early fork of a

program called QuantumEspresso.
• It already had some self timing code inside and it identified the

“hot spot” of the code to be the use of a Fast Fourier
Transform (fft)

• This is famously a compute intensive operation but extremely
useful for data analysis. There is an excellent library that does
this called fftw (fastest fourier transform in the west) that has
been ported to CUDA - so that it is somewhat, at least
conceptually, compatible.

72

Monday, August 26, 13

FFTW vs cuFFT

§ FFTW
• Two steps

- First you create a “plan” - basically telling it how many data points
there are and which direction you are computing (Xn -> xn or vice
versa)

- Then you execute the plan. The execution of the plan has several
more options depending upon how many arrays you have etc.

§ cuFFT
• Two steps (so far so good)

- First you create a plan which is much more complex, describing both
the problem and the setup of data on the device

- Next you execute the plan with very few parameters

73

Monday, August 26, 13

Back to Quantum Espresso

§ They have a very sparse 3-D array of points
(72x72x72) that they have to transform
• Since it is sparse, and the FFT is an expensive operation, they

spend a considerable amount of time locating lines and planes
within the 3D array that are all zeros and for which you do not
have to compute the FFT. This was a big win for the CPU
version of the code, shown below

74

 do k = 1, nz
 do j = 1, ny
 jj = j + (k - 1) * ldy
 ii = 1 + ldx * (jj - 1)
 if (do_fft_x(jj) == 1) THEN
 call FFTW_INPLACE_DRV_1D(bw_plan(1, ip),m,f(ii),incx1,incx2)
 calls = calls + 1
 endif
 enddo
 enddo

Monday, August 26, 13

Results:

75

Non-Cuda Naive Cuda Hey - processors are
free Cuda

Full
Code

42.90 sec 77.1 sec 21.04 sec

First
FFT

18.14 sec 38.03 sec 8.36 sec

Second
FFT

17.82 sec 34.15 sec 6.8 sec

Monday, August 26, 13

Porting Notes

§ The golden asset - someone who knows the code.
• If someone can tell you that this routine “maps” or “reduces” or

“scans” or ... The battle is over!
§ Don’t overlook obvious improvements to start. Almost

anyone looking at old code can find some
performance improvements.
• Fortran - take advantage of Matrix operations - they are way

faster than doing them by hand
• C - look out for bad memory use patterns.
• Use library functions (QE had already been sped up by about

20% using the library fftw rather than the home-grown version)

§ MEASURE - DON’T GUESS!!!

76

Monday, August 26, 13

Wrap up

§ CUDA is different, but it has its charms and learning it
will help with
• learning openGL
• appreciating with the directive based languages have to do
• most everything we learned about algorithms applies to

openMP, MPI, Bluegene, etc. The details change, the weights
change, but the concepts go way back to Connection Machine
days (early 1980s)

• It (and its co-frameworks) are disruptive technologies - THEY
MUST BE PAID ATTENTION TO!

77

Monday, August 26, 13

Resources - 1

§ Web sites
• http://nvidia.com/object/cuda_home_new.html

- Understand that CUDA is an nvidia product (free, not open source)
and works only on nvidia hardware

• http://www.khronos.org/opencl/

§ MOOCs
• Udacity (www.udacity.com) has an outstanding course that is

available - Introduction to Parallel Programming. David Luebke
and John Owens are master teachers.

• Coursera (www.coursera.org) has a course called
“Hetergeneous Parallel Programming” that is a bit more
challenging

78

Monday, August 26, 13

http://nvidia.com/object/cuda_home_new.html
http://nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.udacity.com
http://www.udacity.com
http://www.coursera.org
http://www.coursera.org

Resources - 2

§ Books (Note, all of the titles are available via Safari
Books Online available at a reasonable cost through
BNL & maybe also through ACM Digital Library)
• CUDA Programming/A Developer’s Guide to Parallel

Computing with GPUs, Shane Cook, 2013, Morgan
Kaufmann.
- Great for non-gear heads

• Programming Massively Parallel Processors/A Hands-on
Approach, David B. Kirk & Wen-mei W. Hwu. Second Edition,
2013, Morgan Kaufmann.
- Considerably drier read then the above. Lots of typos. :-(

• GPU Computing Gems/Jade Edition, Wen-Mei W. Hwu
editor. 2012 Morgan Kaufmann.
- An outstanding collection of 36 papers. You will almost certainly find

something of interest.
79

Monday, August 26, 13

Questions
§ What topics for future tutorials - write to me -

drs@bnl.gov
• Deep dive into nvidia hardware & maximizing performance
• Parallel patterns
• IDEs, profilers, debuggers
• Fortran & cuda
• Python & cuda
• OpenCL
• OpenACC
• Intel/Phi
• CUDA libraries
• Thrust (C++ STL for CUDA)
• Porting non-parallel code to CUDA
• Porting parallel code to CUDA
• Multiple GPUs
• Streams
• System design

80

Monday, August 26, 13

mailto:drs@bnl.gov
mailto:drs@bnl.gov

